Solutions for Prepfinal A

I:
Tangent planes: 3x + 2y — z = 2and 8x — 2y — z = 3. Line of intersection:

r=1—4t ,y=1—-5t ,2=3—22t.

IT: log(x? + y?) has no critical point inside (z — 2)? +y? < 1. Hence the maxima and
minima are on the boundary (z — 2)2 + y? = 1. The max is at the point (3,0) and the

value is 2log3. The minimum is at the point (1,0) and the min is 0.

ITI: Critical points: (0,0), (0,+1),(£1,0). Hessian at (0,0):
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IV: If ©y is the initial value then the first approximant is
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Plugging this into the equations yields the values 13/108 and —17/144.

V: Eigenvalues are 6, —4. Eigenvectors are the column vectors of the matrix
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Note that the first column vector is the eigenvector with eigenvalue 6 and the second vector
is perpendicular to this eigenvector. Both are normalized. Now
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which is upper triangular.
VI: Householder reflections:
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VII: A =VDUT where
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VIII: The Householder reflection
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maps the given vector to the vector (2i,0,0).

IX: Think of the curve given in parametrized form, i.e., z(t),y(t), z(t) where z(t) =
1—((z(t)/v2)?+y(t)?). Moving in the direction of steepest ascent means that the velocity
points in the direction of the gradient, i.e.,

T=—x,y=—29y.

thiis is a system of differential equations which we have to solve together with the initial
conditions 2(0) = 1/v/2,y(0) = v/3/2. The solutions are

x(t) = e 1/V2 ,y(t) = e 2V3/2,
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which, together with z(t) yields the curve.

The x and y components of this curve satisfy the equation

(V2z)? =2y/V3 .

X: a) The axis of rotation is
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and the angle is arccos(—1/3).
b) eP#? is given by Euler’s formula
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XI: In the new variables

U=T+Y,V=—1Y
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the integral is given by

XII: The volume is 2.
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