Solutions for Prepfinal A

I:
Tangent planes: $3 x+2 y-z=2$ and $8 x-2 y-z=3$. Line of intersection:

$$
x=1-4 t, y=1-5 t, z=3-22 t .
$$

II: $\log \left(x^{2}+y^{2}\right)$ has no critical point inside $(x-2)^{2}+y^{2}<1$. Hence the maxima and minima are on the boundary $(x-2)^{2}+y^{2}=1$. The max is at the point $(3,0)$ and the value is $2 \log 3$. The minimum is at the point $(1,0)$ and the min is 0 .

III: Critical points: $(0,0),(0, \pm 1),(\pm 1,0)$. Hessian at $(0,0)$:

$$
\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right], \text { saddle }
$$

at $(0, \pm 1)$

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right], \text { local min }
$$

at $(\pm 1,0)$

$$
\left[\begin{array}{cc}
-1 / 2 & 0 \\
0 & -1
\end{array}\right] . \text { local max }
$$

IV: If \vec{x}_{0} is the initial value then the first approximant is

$$
\vec{x}_{1}=\vec{x}_{0}-J_{\vec{f}}^{-1}\left(\vec{x}_{0}\right) \vec{f}\left(\vec{x}_{0}\right)
$$

which leads to

$$
\vec{x}_{1}=\frac{1}{2}\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

and

$$
\vec{x}_{2}=\left[\begin{array}{l}
3 / 4 \\
4 / 3
\end{array}\right] .
$$

Plugging this into the equations yields the values $13 / 108$ and $-17 / 144$.
V: Eigenvalues are 6, -4. Eigenvectors are the column vectors of the matrix

$$
V=\left[\begin{array}{cc}
1 & 1 \\
4 & -1
\end{array}\right]
$$

Schur decomposition: Set

$$
U=\frac{1}{\sqrt{17}}\left[\begin{array}{cc}
1 & 4 \\
4 & -1
\end{array}\right]
$$

Note that the first column vector is the eigenvector with eigenvalue 6 and the second vector is perpendicular to this eigenvector. Both are normalized. Now

$$
U^{*} A U=\frac{1}{17}\left[\begin{array}{cc}
102 & 12 \\
0 & -68
\end{array}\right]
$$

which is upper triangular.
VI: Householder reflections:

$$
M_{1}=\frac{1}{3}\left[\begin{array}{ccc}
2 & 2 & 1 \\
2 & -1 & -2 \\
1 & -2 & 0
\end{array}\right]
$$

and

$$
\begin{gathered}
M_{2}=\frac{1}{5}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -4 & -3 \\
0 & -3 & 4
\end{array}\right] . \\
A=M_{1} M_{2}\left[\begin{array}{ccc}
9 & 8 & 1 \\
0 & 5 & -\frac{19}{5} \\
0 & 0 & -\frac{8}{5}
\end{array}\right] .
\end{gathered}
$$

VII: $A=V D U^{T}$ where

$$
V=\frac{1}{\sqrt{55}}\left[\begin{array}{cc}
2 \sqrt{3} & \sqrt{3} \sqrt{11} \\
5 & 0 \\
3 \sqrt{2} & -\sqrt{2} \sqrt{11}
\end{array}\right], D=\left[\begin{array}{cc}
\sqrt{11} & 0 \\
0 & 1
\end{array}\right], U=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]
$$

VIII: The Householder reflection

$$
I-2 \frac{1}{6}\left[\begin{array}{ccc}
1 & -i & -1-i \\
i & 1 & 1-i \\
-1+i & 1+i & 2
\end{array}\right]
$$

maps the given vector to the vector $(2 i, 0,0)$.
IX: Think of the curve given in parametrized form, i.e., $x(t), y(t), z(t)$ where $z(t)=$ $1-\left((x(t) / \sqrt{2})^{2}+y(t)^{2}\right)$. Moving in the direction of steepest ascent means that the velocity points in the direction of the gradient, i.e.,

$$
\dot{x}=-x, \dot{y}=-2 y
$$

thiis is a system of differential equations which we have to solve together with the initial conditions $x(0)=1 / \sqrt{2}, y(0)=\sqrt{3} / 2$. The solutions are

$$
x(t)=e^{-t} 1 / \sqrt{2}, y(t)=e^{-2 t} \sqrt{3} / 2,
$$

which, together with $z(t)$ yields the curve.
The x and y components of this curve satisfy the equation

$$
(\sqrt{2} x)^{2}=2 y / \sqrt{3}
$$

\mathbf{X} : a) The axis of rotation is

$$
\vec{e}=-\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

and the angle is $\arccos (-1 / 3)$.
b) $e^{B_{\vec{e}} \theta}$ is given by Euler's formula

$$
\cos (\theta) I+(1-\cos (\theta)) \vec{e} \vec{e}^{T}+\sin (\theta) B_{\vec{e}}=\left[\begin{array}{ccc}
\frac{1+\cos (\theta)}{2} & \frac{1-\cos (\theta)}{2} & -\sin (\theta) / \sqrt{2} \\
\frac{1-\cos (\theta)}{2} & \frac{1+\cos (\theta)}{2} & \sin (\theta) / \sqrt{2} \\
\sin (\theta) / \sqrt{2} & -\sin (\theta) / \sqrt{2} & \cos (\theta)
\end{array}\right]
$$

XI: In the new variables

$$
u=x+y, v=x-y
$$

the integral is given by

$$
\frac{1}{4} \int_{0}^{1} \int_{0}^{2}\left(u^{2}+v^{2}\right) d v d u=\frac{5}{6}
$$

XII: The volume is 2π.

