Pratice Test 1A for Math2605, Spring 2004

Problem 1

Consider the function

$$
f(x, y)=x^{4}+y^{4}-4 x y
$$

a) Calculate the gradient at the point $\mathbf{x}_{\mathbf{0}}=\left(2^{1 / 4}, 0\right)$.
b) Find the equation for the line tangent to the curve $f(x, y)=f\left(\mathbf{x}_{\mathbf{0}}\right)$.
c) Find all the points on the curve $f(x, y)=f\left(\mathbf{x}_{\mathbf{0}}\right)$ where the tangent line is parallel to the x-axis.
d) Find all the points on the curve $f(x, y)=f\left(\mathbf{x}_{\mathbf{0}}\right)$ where the tangent is parallel to the y axis.
e) Find points on the curve where the tangent line is parallel to the line $y=x$ and also those where the tangent line is parallel to the line $y=-x$. (Look at the symmetry of the curve!)
f) Sketch the curve, using the information about the tangents. Do not forget to take the symmetry of the curve into consideration.

Problem 2

a) Below is a plot of level sets of a function. Which one of the arrows could be the gradient of that function at that point?

b) Calculate the critical points of the function

$$
f(x, y)=\frac{x y}{\left(1+x^{2}+y^{2}\right)^{2}} .
$$

c) Calculate the Hessian at two of these critical points and decide their type, and whether they are stable or unstable.

