Pratice Test 1B for Math2605, Spring 2004

Problem 1

a) Calculate the gradient of the function

$$
f(x, y, z)=x^{4}+y^{4}+z^{4}+x y z
$$

at the point $(1,2,1)$.
b) Find the linear approximation of the function $f(x, y z)$ at the point $(1,2,1)$.
c) Calculate the the equation for the plane tangent to the surface $f(x, y, z)=f(1,2,1)$ at the point $(1,2,1)$.
c) Find any two linearly independent vectors that are tangent to the surface $f(x, y, z)=$ $f(1,2,1)$ at the point $(1,2,1)$.

Problem 2 Given two functions

$$
f(x, y)=x^{3}-2 x y, g(x, y)=x^{3}-y^{3} .
$$

a) Find the intersection of the curves $f(x, y)=-1$ and $g(x, y)=0$.
b) Find the lines tangent to the curves $f(x, y)=-1$ and $g(x, y)=0$.
c) Calculate the angle between these two tangent lines.

Problem 3 Consider the two function $f(x, y, z)=x^{2}-y^{2}$ and the function $g(x, y, z)=$ $x^{4}+y^{4}+z^{4}$. The level sets $f=1$ and $g=2$ intersect in some curve. Note that the point $(1,0,1)$ is on that curve.
a) Calculate the gradient of the two functions at the point $(1,0,1)$.
b) Find the line tangent to both level sets at the point $(1,0,1)$.

Extra credit:

Find the distance between the curve $x^{2}-y^{2}=4$ and the line $y=2 x$.

