Pratice Test 1A for Math2605, Fall 2004

Consider the function

$$
f(x, y)=\frac{x^{2}-y^{2}}{\left(1+x^{2}+y^{2}\right)^{2}} .
$$

Problem 1

a) Find the equation for the plane tangent to the graph of the function at the point $(-1,1)$.
b) Find the line (in parametrized form) that is tangent to the level curve at the point $(1,0)$.
c) Consider the level curve $f(x, y)=\frac{1}{8}$. Find the points where the tangent line is horizontal.

Problem 2

a) Find all the critical points of this function.
b) Find the Hessian of this function at the critical points.
c) What is the type of each critical point?
d) Draw a few level curves of this function in the vicinity of the critical points.

Problem 3

Consider the map

$$
\mathbf{F}(\mathbf{x})=\left[\begin{array}{c}
x^{3}-3 x y^{2} \\
-y^{3}+3 y x^{2}
\end{array}\right]
$$

a) Use the initial value $\mathbf{x}_{\mathbf{0}}=(0,-1)$ and use one step in Newton's method towards solving the equations

$$
\mathbf{F}(\mathbf{x})=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

b) Check if the new point $\mathbf{x}_{\mathbf{1}}$ yields an improvement.

Extra credit:

The curve C given by intersecting the sphere $x^{2}+y^{2}+z^{2}=3$ with the ellipsoid $x^{2}+2 y^{2}+$ $3 z^{2}=6$ passes through the point $(1,1,1)$. Find the line (in parametrized form) that is tangent to C and that passes through that point.

