Problem 1

The gradient is

$$
\begin{gathered}
\nabla f(x, y)=\frac{1}{\left(1+x^{2}+y^{2}\right)^{3}}\left(2 x\left(1-x^{2}+3 y^{2}\right),-2 y\left(1+3 x^{2}-y^{2}\right)\right) \\
\nabla f(-1,1)=\frac{3}{4}(-1,-1)
\end{gathered}
$$

a) Tangent plane

$$
z=-\frac{3}{4}(x+1)+(y-1)
$$

b)

$$
\nabla f(1,0)=(0,0)
$$

and there is no tangent line.
c)

$$
(x, y)=(5 / 2, \pm 1 / \sqrt{2})
$$

Problem 2 a) Critcal points are

$$
(0,0),(0, \pm 1),(\pm 1,0)
$$

b) c) At $(0,0)$: The Hessian is

$$
\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right]
$$

and the type is a saddle.
At $(\pm 1,0)$: The Hessian is

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & -5
\end{array}\right]
$$

and the type is a maximum
At $(0, \pm 1)$: The Hessian is

$$
\left[\begin{array}{ll}
5 & 0 \\
0 & 1
\end{array}\right]
$$

and the type is a Minimum
Plot:

Problem 3 a)

$$
[-1 / 3,-1]
$$

b) $\left|F\left(\mathbf{x}_{\mathbf{0}}\right)\right|=\sqrt{8} \cdot\left|F\left(\mathbf{x}_{\mathbf{1}}\right)\right|=\sqrt{(26 / 27)^{2}+(2 / 3)^{2}} \approx 32 / 27$ which is an improvement.

Extra credit

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+t\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] .
$$

