Preptest 2B for Calculus III for CS-Majors, Math 2605A1-2
 March 11, 2004

Name:

This test is to be taken without calculators and notes of any sorts. The allowed time is 50 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$..

I: Find the maximum and the minimum of the function $f(x, y)=x^{3}-3 x y^{2}+4\left(x^{2}-y^{2}\right)$ on the disk $x^{2}+y^{2} \leq 1$. Find all the points where the maximum and minimum are attained.

II: Consider the matrix

$$
A=\left[\begin{array}{cccc}
6 & 0 & 1 & 8 \\
0 & 3 & 0 & 7 \\
1 & 0 & 1 & 2 \\
8 & 7 & 2 & -6
\end{array}\right]
$$

a) Calculate $\operatorname{Off}(A)$.
b) Run one step of the Jacobi iteration for diagonalizing the matrix A. Pick the 2×2 submatrix in such a fashion that $\operatorname{Off}\left(G A G^{t}\right)$ is as small as possible. What is the value of $\operatorname{Off}\left(G A G^{t}\right)$ after the first Jacobi itereation? Calculate the Givens rotation G and the matrix $G A G^{t}$.

III: Let $A=\left[\begin{array}{rr}2 & -6 \\ 2 & 9 \\ -8 & -6\end{array}\right]$.
a) Find a singular value decomposition $A=V D U^{t}$ of A.
b) Find the generalized inverse A^{+}of this matrix.
c) Find the least square-least length solution of the equation $A \mathbf{x}=\mathbf{b}$ where

$$
\mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

d) Find $A_{(1)}$, the best rank one approximation of A.

IV: Consider the matrix

$$
B=\left[\begin{array}{ccc}
1 & 1+2 t & t \\
1+2 t & 1 & 5 t \\
t & 5 t & 2
\end{array}\right]
$$

a) Calculate the first order Taylor polynomials of the eigenvalues $\mu_{i}(t)$ of the matrix B.
b) Give an estimate for the difference of the first order Taylor polynomial and the actual eigenvalues when $t=0.1$.
\mathbf{V} : Using the point $(1,1)$ as the initial guess, calculate one step in Newton's method for solving the system of equations

$$
\begin{equation*}
f(x, y)=x^{2}+x y+y^{2}-4=0 \quad g(x, y)=x^{3}-2 x y^{2}+2=0 \tag{1}
\end{equation*}
$$

Check the accuracy of the new point $\mathbf{x}_{\mathbf{1}}$ by substituting it in the above equations (1).

