Solution to Practice Test 2B

Problem I: The critical points are found by solving

$$
\left[\begin{array}{c}
3 x^{2}-3 y^{2}+8 x \\
-6 x y-8 y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Write the second equation as $(6 x+8) y=0$ This yields two alternatives: either $y=0$ or $x=-4 / 3$. If $y=0$ the first equation reads $(3 x+8) x=0$ and we get the solutions

$$
(0,0),\left(-\frac{8}{3}, 0\right)
$$

Next, if $x=-4 / 3$ the first equation reads $3 y^{2}+16 / 3=0$ which does not have a real solution. Thus the above two points are the only critical points. The first is inside the unit disk and the second is not. Hence $(0,0)$ is the only critical point we have to consider.

Now we consider the boundary. Using Lagrange multipliers we have to solve the euqations

$$
\left[\begin{array}{c}
3 x^{2}-3 y^{2}+8 x \\
-6 x y-8 y
\end{array}\right]=2 \lambda\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

and $x^{2}+y^{2}=1$. Note that λ cannot be zero since that would amount to calculating critical points which we just did. Cross-multiplying leads to the equations

$$
\left(3 x^{2}-3 y^{2}+8 x\right) y=-(6 x+8) y x, x^{2}+y^{2}-1=0 .
$$

Clearly $(1,0),(-1,0)$ are solutions. If $y \neq 0$ we can divide and get the new equations

$$
\left(3 x^{2}-3 y^{2}+8 x\right)=-(6 x+8) x, x^{2}+y^{2}-1=0 .
$$

Eliminating y and solving for x we get two solutions $x_{1}=-3 / 2$ which is not on the unit circle and $x=1 / 6$ which leads to the points

$$
\left(\frac{1}{6}, \pm \frac{\sqrt{35}}{6}\right) .
$$

Now

$$
f(0,0)=0, f\left(\left(\frac{1}{6}, \frac{\sqrt{35}}{6}\right)=-\frac{115}{27}=f\left(\left(\frac{1}{6},-\frac{\sqrt{35}}{6}\right) .\right.\right.
$$

Thus f has a maximum at $(0,0)$ and a minimum at the other two points.
Problem II: a) $\operatorname{Off}(A)=236$.
The submatrix is

$$
\left[\begin{array}{rr}
6 & 8 \\
8 & -6
\end{array}\right]
$$

which has the eigenvalues $10,-10$ with the corresponding eigenvectors

$$
\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right], \frac{1}{\sqrt{5}}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

The Givens matrix G is

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\frac{2}{\sqrt{5}} & 0 & 0 & \frac{-1}{\sqrt{5}} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\frac{1}{\sqrt{5}} & 0 & 0 & \frac{2}{\sqrt{5}}
\end{array}\right]} \\
& G^{T} A G=\left[\begin{array}{cccc}
10 & \frac{7}{\sqrt{5}} & \frac{4}{\sqrt{5}} & 0 \\
\frac{7}{\sqrt{5}} & 3 & 0 & \frac{14}{\sqrt{5}} \\
\frac{4}{\sqrt{5}} & 0 & 1 & \frac{3}{\sqrt{5}} \\
0 \frac{14}{\sqrt{5}} & \frac{3}{\sqrt{5}} & -10
\end{array}\right] \\
& \operatorname{Off}\left(G^{T} A G\right)=\operatorname{Off}(A)-2 \times 8^{2}=108 .
\end{aligned}
$$

Problem III: See the solution of the previous practice test.
Problem IV: Write the matrix as $A+t B$ where

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right], B=\left[\begin{array}{lll}
0 & 2 & 1 \\
2 & 0 & 5 \\
1 & 5 & 0
\end{array}\right]
$$

The eigenvalues of A with the corresponding eigenvectors are

$$
2, \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] ; 0, \frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] ; 2,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Using that $\mu(t)=\mu(0)+t v \cdot B v+o(t)$ we get

$$
\mu_{1}(t)=2+2 t+o(t), \mu_{2}(t)=-2 t+o(t), \mu_{3}(t)=2+o(t)
$$

Calculate $G^{T}(A+t B) G$ where G is the matrix that has the eigenvectors of A as columns. Note that G is a rotation. This new matrix is

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]+\frac{t}{\sqrt{2}}\left[\begin{array}{ccc}
4 & 0 & 6 \\
0 & -4 & 4 \\
6 & 4 & 0
\end{array}\right]
$$

the Gershgorin disks are the following: one centered at $2+0.4 / \sqrt{2}$ with radius $0.6 / \sqrt{2}$, one centered at $-0.4 / \sqrt{2}$ with radius $0.4 / \sqrt{2}$ and another one centered at 2 with radius $0.6 / \sqrt{2}$. Each contains at least an eigenvalue. For every eigenvalue there is a Gershgorin disk which contains that eigenvlaue, and hence one eigenvalue satisfies $\left|\mu_{2}+0.4 / \sqrt{2}\right|<0.4 / \sqrt{2}$ while the other two must sit between $2-0.6 / \sqrt{2}$ and $2+1 / \sqrt{2}$. More cannot be said.

Problem V:

$$
F(x, y)=\left[\begin{array}{c}
x^{2}+x y+y^{2}-4 \\
x^{3}-2 x y^{2}+2
\end{array}\right]
$$

and

$$
F(1,1)=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The Jacobian is

$$
\left[\begin{array}{ll}
2 x+y & x+2 y \\
3 x^{2}-2 y^{2} & -4 x y
\end{array}\right]
$$

At $(1,1)$ this is

$$
\left[\begin{array}{rr}
3 & 3 \\
1 & -4
\end{array}\right]
$$

Its inverse is

$$
\frac{1}{15}\left[\begin{array}{rr}
4 & 3 \\
1 & -3
\end{array}\right]
$$

Now

$$
x_{1}=x_{0}-J_{F}^{-1}\left(x_{0}\right) F\left(x_{0}\right)=\frac{1}{15}\left[\begin{array}{l}
16 \\
19
\end{array}\right]
$$

$$
F\left(x_{1}\right)=\left[\begin{array}{c}
\frac{21}{225} \\
\frac{4081}{3375}
\end{array}\right]
$$

and

$$
\left|F\left(x_{1}\right)\right|<1.2128
$$

Since

$$
|F(1,1)|=\sqrt{2}
$$

we have an improvement.

