Pratice Test 1A for Math2605, Spring 2004

Problem 1

Find the maximum value of the function

$$
\frac{1}{1+x^{2}+(y-1)^{2}}
$$

on the set given by all pairs (x, y), such that $x^{2}-y^{2} \geq 1$. Find all the points where the maximal value is attained.

Problem 2
a) Apply one step of the Jacobi iteration for diagonalizing the matrix

$$
\left[\begin{array}{ccc}
2 & 0.1 & 1 \\
0.1 & 4 & 0.2 \\
1 & 0 . .2 & 2
\end{array}\right]
$$

Make sure that you do it in such a fashion that the new matrix is almost diagonal.
b) Give upper and lower bounds on the eigenvalues.

Problem 3

a) Find the singular value decomposition of the matrix
b) Find the least square- least length solution of the problem $A \mathbf{x}=\mathbf{b}$ where

$$
\mathbf{b}=
$$

Problem 4

Find the best rank 2 approximation for the matrix

Problem 5

Find the volume of the set consisting of all vectors (x, y, z) that satisfy the inequalities

$$
-1 \leq x+y+z \leq 1,-2 \leq-x+2 y+z \leq 2 \text { and }-3 \leq 2 x-y+z \leq 3 .
$$

Problem 6

Find the Schur decomposition of the matrix

$$
\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right] .
$$

Problem 7

