Practice Test 3 B

Problem 1: For the matrix

$$
A=\left[\begin{array}{ll}
1 & -5 \\
2 & -1
\end{array}\right]
$$

a) Find the QR factorization using Householder reflections.
b) Find the Schur factorization.
c) Compute $e^{A t}$.

Problem 2: Consider the curve

$$
x(t)=1-\cos (t), y(t)=t-\sin (t), 0<t<2 \pi
$$

a) Find the velocity $\mathbf{v}(t)$ and the acceleration $\mathbf{a}(t)$.
b) Compute the unit tangent - and the unit normal vector to the curve.
c) Find the length of this curve.
d) Compute the curvature $\kappa(t)$.

Problem 3: Consider the rotation matrix

$$
Q=\frac{1}{14}\left[\begin{array}{ccc}
6 & -4 & -12 \\
12 & 6 & 4 \\
4 & -12 & 6
\end{array}\right]
$$

a) Find the angle of rotation.
b) Find the axis of rotation.
c) Find a square root of the matrix Q.

Problem 4: Given the differential equation $x^{\prime \prime}+\mu\left(x^{2}-1\right)+x=0$.
a) Write this differential equation as a first order system.
b) Find all the critical points.
c) Linearize the system around these critical points.
d) Draw a few curves for the phase portrait for the linearized system. How does it look for various values of μ ?
e) Determine the stablity of the critical points for various values of μ.

