Test 1 for Calculus III for CS Majors, Math 2605 T1-T2, September 27, 2011

Name:

This test is to be taken without calculators and notes of any sort. The allowed time is 50 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$. State your work clearly, otherwise credit cannot be given.

Problem 1: Consider the function

$$
f(x, y)=x^{3}+y^{3}-3 x^{2} y
$$

a) (5 points) Calculate the gradient at the point $(1,1)$.

$$
\nabla f(x, y)=\left[\begin{array}{l}
3 x^{2}-6 x y \\
3 y^{2}-3 x^{2}
\end{array}\right]
$$

Evaluated at $(1,1)$ yields

$$
\nabla f(1,1)=\left[\begin{array}{c}
-3 \\
0
\end{array}\right]
$$

b) (10 points) Find the plane that is tangent to the graph of $f(x, y)$ at the point $(1,1)$.

$$
z=f(1,1)+\nabla f(1,2) \cdot\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)=-1-3(x-1)
$$

or

$$
z+3 x=2
$$

c) (10 points) Find the points on the curve $f(x, y)=f(1,1)$ where the tangent line is horizontal.

This means that the gradient is vertical and hence the x-component has to vanish. Hence we have to solve

$$
3 x^{2}-6 x y=0, x^{3}+y^{3}-3 x^{2} y=-1
$$

From the first equation we get $x=0$ or $2 y=x$. The first case leads to $y^{3}=-1$ and hence $y=-1$. Thus $(0,-1)$ is such a point. For the second alternative we get

$$
8 y^{3}+y^{3}-12 y^{3}=-3 y^{3}=-1
$$

and hence $y=\frac{1}{3^{1 / 3}}$ and $x=\frac{2}{3^{1 / 3}}$.
d) (10 points) Below is the plot of level curves of a function. Indicate in the picture below which of the arrows correspond to gradients of a function.

Problem 2: a) (10 points) Calculate the critical points of the function

$$
\begin{aligned}
& f(x, y)=\frac{1}{3} x^{3}+y x-y \\
& \nabla f=\left[\begin{array}{c}
x^{2}+y \\
x-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

leads to $x=1$ and $y=-1$.
b) (10 points) Calculate the Hessian at these critical points.

$$
H_{f}(1,-1)=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]
$$

c) (10 points) By computing the eigenvalues of the Hessian at these critical points, find the type of these critical points. Are they a max a min or a saddle?

The eigenvalues are $1+\sqrt{2}$ and $1-\sqrt{2}$ and hence the critical point is a saddle.

Problem 3: (10 points) a) Set up Newton's scheme for solving the equation $x^{2}-y^{2}-1=0$ and $2 x y-1=0$.

$$
\begin{gathered}
\mathbf{x}_{1}=\mathbf{x}_{0}-J_{F}\left(\mathbf{x}_{0}\right)^{-1} F\left(\mathbf{x}_{0}\right) \\
F(\mathbf{x})=\left[\begin{array}{c}
x^{2}-y^{2}-1 \\
2 x y-1
\end{array}\right] \\
J_{F}(\mathbf{x})=\left[\begin{array}{cc}
2 x & -2 y \\
2 y & 2 x
\end{array}\right]
\end{gathered}
$$

b) (15 points) Use as an initial guess the point $\mathbf{x}_{\mathbf{0}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and calculate the next approximation $\mathbf{x}_{\mathbf{1}}$.

$$
\begin{gathered}
F(\mathbf{x})=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \\
J_{F}(\mathbf{x})=2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
J_{F}(\mathbf{x})^{-1}=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
\frac{3}{2}
\end{array}\right]
\end{gathered}
$$

c) (5 points) Check whether this leads to an improvement.

$$
\begin{gathered}
\left|F\left(\mathbf{x}_{0}\right)\right|=1 \\
\left|F\left(\mathbf{x}_{1}\right)\right|=\frac{\sqrt{97}}{4}
\end{gathered}
$$

which is not an improvement.

Problem 4: Consider the function $f(x, y)=x^{2}-y^{2}+\frac{1}{\sqrt{2}} x y$ on the unit disk $\{(x, y)$: $\left.x^{2}+y^{2} \leq 1\right\}$.
a) (5 points) Find the critical points of this function in the interior of the unit disk, i.e., in $\left\{(x, y): x^{2}+y^{2}<1\right\}$.

$$
\nabla f(x, y)=\left[\begin{array}{c}
2 x+\frac{1}{\sqrt{2}} y \\
-2 y+\frac{1}{\sqrt{2}} x
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and the only solution is $(0,0)$. In other words the origin is the only critical point.
b) Extra credit (15 points) Using Lagrange multipliers, find the maximum and minimum of $f(x, y)$ on the boundary of the disk, i.e., on $\left\{(x, y): x^{2}+y^{2}=1\right\}$. Find the maximum and minmum of $f(x, y)$ on $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.

The equations for the Lagrange method are

$$
\left[\begin{array}{c}
2 x+\frac{1}{\sqrt{2}} y \\
-2 y+\frac{1}{\sqrt{2}} x
\end{array}\right]=2 \lambda\left[\begin{array}{l}
x \\
y
\end{array}\right], x^{2}+y^{2}-1=0 .
$$

Cross-multiplication leads to

$$
\left(2 x+\frac{1}{\sqrt{2}} y\right) y=\left(-2 y+\frac{1}{\sqrt{2}} x\right) x
$$

or

$$
\left(x^{2}-y^{2}\right)-4 \sqrt{2} x y=0 .
$$

This can be written as

$$
(x-2 \sqrt{2} y)^{2}=9 y^{2}
$$

or

$$
x-2 \sqrt{2} y= \pm 3 y
$$

The first possibility is

$$
x=(3+2 \sqrt{2}) y
$$

and plugging this into the equation $x^{2}+y^{2}=1$ yields Case 1 :

$$
y= \pm \frac{1}{\sqrt{(3+2 \sqrt{2})^{2}+1}}= \pm \frac{1}{\sqrt{18+12 \sqrt{2}}}, x= \pm \frac{3+2 \sqrt{2}}{\sqrt{18+12 \sqrt{2}}}
$$

The values of the function at these two points are both equals to

$$
\frac{12+9 \sqrt{2}}{12+8 \sqrt{2}}>0
$$

The other solutions is

$$
x=(2 \sqrt{2}-3) y
$$

which leads to Case 2:

$$
y= \pm \frac{1}{\sqrt{18-12 \sqrt{2}}}, x= \pm \frac{2 \sqrt{2}-3}{\sqrt{18-12 \sqrt{2}}}
$$

The values of the function at these points is

$$
\frac{36-27 \sqrt{2}}{36-24 \sqrt{2}}<0
$$

Since the function vanishes at the only critical point, we have that the function has a maximum in Case 1 and a minimum in Case 2.

