Test 3 for Calculus III for CS Majors, Math 2506 T1-T2, November 22, 2011

Name:

This test is to be taken without calculators and notes of any sort. The allowed time is 50 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$. State your work clearly, otherwise credit cannot be given.

Problem 1: a) (10 points) Find the Q-R factorization of the matrix

$$
\begin{gathered}
A=\left[\begin{array}{cc}
3 & 4 \\
-4 & -7
\end{array}\right] . \\
\mathbf{u}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{gathered}
$$

and

$$
Q=\frac{1}{5}\left[\begin{array}{cc}
3 & -4 \\
-4 & -3
\end{array}\right]
$$

and

$$
Q A=\left[\begin{array}{ll}
5 & 8 \\
0 & 1
\end{array}\right]=: R
$$

Of course

$$
A=Q R
$$

b) (10 points) Find the Schur factorization of the matrix A.
A has eigenvalues 1 and -5 . The normalized eigenvector associated with the eigenvalue 1 is

$$
\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Hence we set

$$
U=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
-2 & 1 \\
1 & 2
\end{array}\right]
$$

and

$$
T=U^{T} A U=\left[\begin{array}{ll}
1 & -8 \\
0 & -5
\end{array}\right]
$$

Of course

$$
A=U^{T} T U
$$

Problem 2: a) (10 points) Find the rotation Q_{0} that has an angle of rotation of π and rotation axis

$$
\frac{1}{\sqrt{17}}\left[\begin{array}{l}
3 \\
2 \\
2
\end{array}\right]
$$

Euler's formula reads

$$
\cos \theta I+(1-\cos \theta) \mathbf{e} \mathbf{e}^{T}+\sin \theta B_{\mathbf{e}}
$$

where

$$
B_{\mathbf{e}}=\left[\begin{array}{ccc}
0 & -e_{3} & e_{2} \\
e_{3} & 0 & -e_{1} \\
-e_{2} & e_{1} & 0
\end{array}\right]
$$

In our example $\cos \pi=-1$ and $\sin \pi=0$. Hence

$$
Q=-I+2 \mathbf{e e}^{T}=-I+\frac{2}{17}\left[\begin{array}{lll}
9 & 6 & 6 \\
6 & 4 & 4 \\
6 & 4 & 4
\end{array}\right]=\frac{1}{17}\left[\begin{array}{ccc}
1 & 12 & 12 \\
12 & -9 & 8 \\
12 & 8 & -9
\end{array}\right]
$$

b) (10 points) Find the angle and axis of rotation for the matrix

$$
\begin{gathered}
Q_{1}=\frac{1}{9}\left[\begin{array}{ccc}
1 & 8 & 4 \\
4 & -4 & 7 \\
8 & 1 & -4
\end{array}\right] \\
\cos \theta=\frac{\operatorname{Tr}\left(Q_{1}\right)-1}{2}=-\frac{8}{9}
\end{gathered}
$$

Further

$$
Q-Q^{T}=\frac{1}{9}\left[\begin{array}{ccc}
0 & 4 & -4 \\
-4 & 0 & 6 \\
4 & -6 & 0
\end{array}\right]
$$

Thus

$$
\mathbf{e}=\frac{1}{\sqrt{17}}\left[\begin{array}{l}
-3 \\
-2 \\
-2
\end{array}\right]
$$

c) (5 points) What do Q_{0} and Q_{1} have in common?

Their axes of rotation are parallel.

Problem 3: Consider the differential equation

$$
x^{\prime \prime}=x^{\prime}+x-x^{2} .
$$

a) (5 points) Write this equation as a first order system of equations.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{c}
y \\
y+x-x^{2}
\end{array}\right] .
$$

b) (5 points) Find the equilibrium points.

$$
(0,0),(1,0) .
$$

c) (10 points) Linearize the system at these equilibrium points.

Around the equilibrium point $(0,0)$ we have

$$
\mathbf{z}^{\prime}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \mathbf{z}
$$

and around $(1,0)$

$$
\mathbf{z}^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right] \mathbf{z}
$$

d) (10 points) For these linear systems determine the type and stability of these equilibrium points.

The point (0,0 is a saddle since the determinant equals -1 . This point remains a saddle also for the non-linear system.

The linearized system at the point $(1,0)$ has the characteristic polynomial $\lambda^{2}-\lambda+1$ and hence the eigenvalues

$$
\lambda_{ \pm}=\frac{1}{2} \pm \frac{\sqrt{3}}{2} i
$$

which shows that the motion in the vicinity of the critical point is an unstable spiral.

Problem 4: Consider the following initial value problem

$$
\begin{gathered}
x^{\prime}=5 x+4 y \\
y^{\prime}=4 x-y
\end{gathered}, x(0)=1, y(0)=3
$$

a) (5 points) Bring the above system into the form $\mathbf{x}^{\prime}=A \mathbf{x}$ where A is a 2×2 matrix.

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

where

$$
\left[\begin{array}{cc}
5 & 4 \\
4 & -1
\end{array}\right]
$$

b) (10 points) Find the eigenvalues and eigenvectors of A.

$$
\begin{gathered}
\lambda^{2}-4 \lambda-21=0 \\
\lambda_{1}=7, \lambda_{2}=-3 .
\end{gathered}
$$

The corresponding eigenvalues are

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right] \text { and }\left[\begin{array}{c}
-1 \\
2
\end{array}\right] .
$$

c) (10 points) Solve the initial value problem.

The general solutions is given by

$$
a e^{7 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+b e^{-3 t}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

and with $a=b=1$ the initial conditions are satisfied. Hence

$$
e^{7 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+e^{-3 t}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

is the desired solution.

