Quiz 2 for Calculus ++, Math 2605 T1-2, September 15, 2011

Name:

This quiz is to be taken without calculators and notes of any sorts. The allowed time is 20 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$..

I: a) (2 points) Calculate the gradient of the function $f(x, y)=y-x^{4} / 4$.

$$
\left[\begin{array}{c}
-x^{3} \\
1
\end{array}\right]
$$

b) (2 points) At the point $\left[\begin{array}{l}1 \\ 1\end{array}\right]$, find the direction of largest increase of the function $f(x, y)$. (Just give the direction as a unit vector).

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

II: (2 points) Does the function $g(x, y)=e^{x^{2}} y$ have critical points, i.e., the points where the gradient vanishes?

$$
\nabla g=e^{x^{2}}\left[\begin{array}{c}
2 x y \\
1
\end{array}\right]
$$

There are no critical points.
III: (4 points) a) Find the points on the curve $y^{2}-x^{4}=1$ where the tangent line is horizontal.

The gradient of the function $y^{2}-x^{4}$ is

$$
\left[\begin{array}{c}
-4 x^{3} \\
2 y
\end{array}\right]
$$

The gradient must point in the y direction and hence $-4 x^{3}=0$ or $x=0$ But this means that $y^{2}=1$. Hence the points are

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1
\end{array}\right] .
$$

