Quiz 3 for Calculus ++ , Math 2605 T1-2, October 13, 2011

Name:

This quiz is to be taken without calculators and notes of any sorts. The allowed time is 20 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write 1.414....

I: (3 points) Find the maximum and minimum of the function $f(x, y)=2 x+y$ on the circle $x^{2}+y^{2}=1$. Use Lagrange multipliers.

With $g(x, y)=x^{2}+y^{2}-1$ we have

$$
\nabla f=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \nabla g=2\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

At the extremal points the two gradients have to be parallel and so

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]=2 \lambda\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

which, by cross-multiplication leads to $2 y=x$. This together with $g=0$ yields $5 y^{2}=1$ and hence $y= \pm 1 / \sqrt{5}$. Thus the points are

$$
\vec{x}_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad \vec{x}_{2}=-\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

$f\left(\vec{x}_{1}\right)=\sqrt{5}$ is the max and $f\left(\vec{x}_{2}\right)=-\sqrt{5}$ is the min.
II: a) (2 points) Find the eigenvalues of the matrix $\left[\begin{array}{cc}1 & 3 \\ 3 & -7\end{array}\right]$
The characteristic polynomial is given by

$$
\lambda^{2}+6 \lambda-16=(\lambda+3)^{2}-25=0
$$

which has the roots $2,-8$ and these are the two eigenvalues.
b) (2 points) The matrix $\left[\begin{array}{cc}3 & 3 \\ 3 & -5\end{array}\right]$ has the eigenvalues 4 and -6 . Find the normalized eigenvectors.

Solving the equation $3 x+3 y=4 x$ yields $x=3 c, y=c$ where c is an arbitrary constant. Hence

$$
\frac{1}{\sqrt{10}}\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

is the normalized eigenvector associated with the eigenvalue 4 .
The other eigenvector is orthogonal and is given by

$$
\frac{1}{\sqrt{10}}\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
$$

III: (3 points) The matrix $\left[\begin{array}{cc}4 & 3 \\ 3 & -4\end{array}\right]$ has the normalized eigenvectors $\frac{1}{\sqrt{10}}\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\frac{1}{\sqrt{10}}\left[\begin{array}{c}-1 \\ 3\end{array}\right]$ Calculate the Givens matrix in the first step of the Jacobi algorithm for diagonalizing the matrix

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & 1 \\
0 & 4 & 0 & 3 \\
2 & 0 & 1 & 0 \\
1 & 3 & 0 & -4
\end{array}\right]
$$

The Givens matrix is given by

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{3}{\sqrt{10}} & 0 & \frac{-1}{\sqrt{10}} \\
0 & 0 & 1 & 0 \\
0 & \frac{1}{\sqrt{10}} & 0 & \frac{3}{\sqrt{10}}
\end{array}\right]
$$

