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Practice Final Exam for Calculus II, Math 1502, December 10, 2010

Name:

Section:

Name of TA:

This test is to be taken without calculators and notes of any sorts. The allowed time is

2 hours and 50 minutes. Provide exact answers; not decimal approximations! For example,

if you mean
√

2 do not write 1.414 . . . . Show your work, otherwise credit cannot be given.

Write your name, your section number as well as the name of your TA on EVERY

PAGE of this test. This is very important.

Problem Score
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IX
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XI

XII

Total
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Name:

Section:

Name of TA:

Problems related to Block 1:

I: (15 points) Compute with an error less than 10−3∫ 3

2

e
1

x2 dx .

ey =
n∑

k=0

yk

k!
+

ecyn+1

(n+ 1)!

where c is some number between 0 and y. Now we set y = 1
x2 and note that since x ranges

between 2 and 3 the variable y ranges between 1/4 and 1/9. Hence we know that c can be

a number that must be somewhere between 0 and 1/4 and since ey is monotone increasing

we take c = 1/4 to obtain an upper bound on the remainder of the form

e1/4yn+1

(n+ 1)!
.

Now from what we know about the exponential function e < 3 and hence e1/4 < 31/4 which

is some number less than 2. Thus we find that

0 <
∫ 3

2

[
e

1
x2 −

∑n
k=0

x−2k

k!

]
dx ≤ 2

(n+1)!

∫ 3

2
x−2(n+1)dx

= 2
(n+1)!

1
2n+1

[2−2n−1 − 3−2n−1] < 2
(n+1)!

1
2n+1

2−2n−1 .

If we choose n = 3 we find that the remainder of the integral is bounded by

2

4!

1

7
2−7 =

1

84× 128
<

1

1000
.

Integrating the sum in the integral yields

3∑
k=0

[
2−2k+1 − 3−2k+1

] 1

k!(2k − 1)
.

II: a) (7 points) Compute the limit

lim
x→0

ex − cosx− sinx

x3
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Using the Taylor expansion for all the functions in the numerator yields

ex − cosx− sinx = 1 + x+
x2

2
+
x3

3!
+ · · · − 1 +

x2

2
+ · · · − x− x3

3!
+ . . .

The leading order coefficient is x2 and hence the limit does not exist.

b) (8 points) Does the improper integral∫ 1

0

1

x2
e

1
xdx

exist? If yes, compute it.

We have to compute

lim
ε→0

∫ 1

ε

1

x2
e

1
xdx

and using the substitution

u =
1

x

this integral can be rewritten as ∫ 1
ε

1

eudu = e
1
ε − e−1.

Clearly the limit as ε→ 0 does not exist.
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Name:

Section:

Name of TA:

Problems related to Block 2:

III: a) (7 points) Is the series
∞∑

k=0

(−1)k (k!)2

k2k

convergent? Is it absolutely convergent?

Using the ratio test we get that

((k + 1)!)2

(k + 1)2k+2

k2k

(k!)2
=

(
k

k + 1

)2k

which converges to 1
e2 < 1. Hence the series is absolutely convergent and hence, in particular,

convergent.

b) (8 points) Find the interval of convergence of the power series

∞∑
k=1

(−1)kk−1+ 1
k (x− 2)k

Set

ak =
|x− 2|k

k1− 1
k

and note that

lim
k→∞

ak+1

ak

= |x− 2|

hence the interval of convergence contains the interval (1, 3). Looking at the end point x = 3

we find the series
∞∑

k=1

(−1)kk−1+ 1
k

which converges since it is alternating and the coefficients decrease monotonically to zero.

Indeed the statement

(k + 1)−1+ 1
k+1 < k−1+ 1

k

is equivalent to the statement

(k + 1)1− 1
k+1 > k1− 1

k ,

or

(k + 1)
k

k+1 > k
k−1

k ,
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Since k ≥ 1 and since k
k+1

> k−1
k

we have that

(k + 1)
k

k+1 > (k + 1)
k−1

k > k
k−1

k .

Hence the series converges at x = 3. At x = 1, however, the series diverges, since

k−1+ 1
k × k → 1

as k →∞ and since
∑∞

k=1
1
k

diverges, we also have that

∞∑
k=1

k−1+ 1
k

diverges, by the limit comparison test.

IV: (15 points) Solve the initial value problem

y′ − 1

x2
y = e−

1
x , y(1) =

2

e
.

Multiply the equation by the integrating factor e
1
x

e
1
xy′ − 1

x2
e

1
xy =

(
e

1
xy
)′

= 1 .

Hence

y(x) = xe−
1
x + ce−

1
x

where c s a constant. y(1) = 2
e

yields c = 1 and hence our solutions is

y(x) = (x+ 1)e−
1
x .
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Name:

Section:

Name of TA:

Problems related to Block 3:

V: (20 points) Consider the system of equations

2x+ y + z = b

x+ y − 2z = 2

x− y + az = −1

Determine all values for a and b for which this system has a) non solution, b) exactly one

solution, c) infinitely many solutions. In the case b) and c) Compute all the solutions in

terms of a and b. The augmented matrix is
2 1 1 | b

1 1 −2 | 2

1 −1 a | −1


Switching the first and second row leads to

1 1 −2 | 2

2 1 1 | b

1 −1 a | −1


Row reduction leads to 

1 1 −2 | 2

0 −1 5 | b− 4

0 0 a− 8 | 5− 2b


If a = 8 and 2b 6= 5 there is no solution. If a 6= 8 there is always a unique solutions and if

a = 8 and 2b = 5 there are infinitely many solutions.

If a 6= 8 we can use back substitution and obtain:

z =
5− 2b

a− 8
, y = 5

5− 2b

a− 8
+ 4− b , x = −3

5− 2b

a− 8
+ b− 2

If a = 8 and 2b = 5 then the row reduced augmented matrix is
1 1 −2 | 2

0 −1 5 | −3
2

0 0 0 | 0
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and we find z = t, y = 5t+ 3
2

and x = −3t+ 1
2
.

VI: (15 points) A plane in R3 passes through the points

p1 =


1

1

1

 , p2 =


2

1

2

 , p3 =


2

2

2


Give two representations of the plane, on in terms of parametrization and one in terms of

an equation.

The plane is spanned by the vectors ~v1 = p2 − p1 , ~v2 = p3 − p1 and passes through

the point p1. Hence it is given by the parametrization

~x(s, t) =


1

1

1

+ s


1

0

1

+ t


1

1

1


To find the equation we have to find a vector that is perpendicular to both vectors ~v1 and

~v2 and inspection shows that the vector (1, 0,−1) does the job. We have to make sure that

the vector (1, 1, 1) has its tip on the plane. Hence the equation is given by

x− z = 0 .
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Name:

Section:

Name of TA:

VII: (20 points) Use the least square method to find the distance of the tip of the vector
1

1

1


to the plane given by 

1

0

0

+ s


2

1

−1

+ t


1

1

1


Solve the problem in two ways, once using the normal equations and then using the QR

factorization.

If we set

A =


2 1

1 1

−1 1


then we have to solve the least square problem A~x = ~b where

~b =


0

1

1

 .

The normal equations are ATA~x = AT~b and hence we have to solve[
6 2

2 3

]
~x =

[
0

2

]

which yields x = −2/7 , y = 6/7. Thus, the vector in Img(A) that is closest to ~b is given by

A~x =
2

7


1

2

4

 .
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For the distance we have to calculate the length of
0

1

1

− 2

7


1

2

4

 =
1

7


−2

3

−1

 ,

given by √
2

7
.

Now we use the QR factorization. We have to find an orthonormal basis for Img(A).

One vector is

1√
6


2

1

−1


and the other one is then found by looking at the vector

1

1

1

− 2

6


2

1

−1

 =
1

3


1

2

4


which normalized equals

1√
21


1

2

4


Hence Q is given by

Q =


2√
6

1√
21

1√
6

2√
21

−1√
6

4√
21


and hence with QTA = R we get [

6√
6

2√
6

0 7√
21

]
.

Now R~x = QT~b leads to x = −2/7, y = 6/7 which checks. However, in order to compute

the shortest distance the matrix R is not important. The projection of ~b onto Img(A) is

given by

QQT~b = Q

[
0
6√
21

]
=

2

7


1

2

4
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which checks with what we had before, and the distance vector from the tip of the vector ~b

to Img(A) is given by

~b−QQT~b =
1

7


−2

3

−1

 ,

as we had before. Of course the distance is then the same number as before.

VIII: (15 points) Consider the matrix

A =


2 3 5 6

1 0 1 3

4 1 5 12

2 1 4 7


Find a basis for Img(A) and for Ker(A) as well as for Img(AT ) and for Ker(AT ). Try do

this with a little computation as possible. Row reducing A yields
−2

1

−1

1

 ,

as a basis vector for the kernel of A. Thus we can say that the dimension of Img(A) which

is the same as the dimension of Img(AT ) equals 3. Thus Ker(AT ) is one dimensional. The

row reduced matrix is 
1 0 1 3

0 1 1 0

0 0 1 1

0 0 0 0


Since Img(AT ) is the orthogonal complement we have to find three linearly independent

vectors that are perpendicular to the above vector. Thus we have to solve

−2w + x− y + z = 0

which leads to the one-one parametrization z = t, y = s, x = r and w = 1
2
[r − s + t]. Hence

we get 
1

2

0

0

 ,


−1

0

2

0

 ,


1

0

0

2
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as a basis for Img(AT ). We know that the first three columns of the matrix are pivotal

columns and hence we have that the first three vectors from a basis for Img(A). To find a

basis for Ker(AT ) we have to find a vector perpendicular to the first three column vectors

which can be found by row reducing the system
2 1 4 2

3 0 1 1

5 1 5 4


which yields 

2 1 4 2

0 3 10 4

0 0 0 2


and from which we get that the basis for the kernel of AT is

1

10

−3

0
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Name:

Section:

Name of TA:

IX: (15 points) Graph the curve given by the equation

11x2 − 6xy + 19y2 = 10 .

The associated matrix is given by [
11 −3

−3 19

]

whose characteristic polynomial is µ2 − 30µ+ 20 = (µ− 10)(µ− 20). Hence the eigenvalues

are µ1 = 10, µ2 = 20. The associated eigenvectors are

~u1 =
1√
10

[
3

1

]

and

~u2 =
1√
10

[
−1

3

]
.

In the u− v plane the cureve is given by

u2 + 2v2 = 1

which is an ellipse whose semiaxis in the u–direction has length 1 and whose semiaxis in the

direction v has length 1/
√

2. To get the picture in the x − −y plane we have to rotate the

u−−v picture by the rotation ,atrix

U = [~u1, ~u2] =
1√
10

[
3 −1

1 3

]
.

X: (15 points) Diagonalize the matrices

a)


4 1 1

1 4 1

1 1 4

 .
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The eigenvalue 6 has the eigenvector

1√
3


1

1

1


Perpendicular to this is the vector

1√
2


−1

1

0


which is an eigenvector with eigenvalue 3. Thus the vector

1√
6


1

1

−2


which is perpendicular to both must be an eigenvector, since the matrix is symmetric. The

associated eigenvalue is 3 also.

b)

[
6 9

4 11

]
The characteristic polynomial is µ2 − 17µ + 30 = (µ − 15)(µ − 2). The iegenvector

associated with µ1 = 15 is the vector [
1

1

]
and the one associated to µ2 = 2 is [

9

−4

]
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Name:

Section:

Name of TA:

XI: (20 points) Solve the initial value problem given by the system

x′ = 8x+ 9y

y′ = 4x+ 13y

x(0) = 1 , y(0) = 2 (0.1)

Use both methods, the superposition principle and the exponential of a matrix.

The eigenvalues and the corresponding eigenvectors are

µ1 = 17 , ~u1 =

[
1

1

]

and

µ2 = 4 , ~u2 =

[
9

−4

]
The general solution is then given by

ae17t

[
1

1

]
+ be4t

[
9

−4

]

Using the intial conditions we arrive at

22

13
e17t

[
1

1

]
− 1

13
e4t

[
9

−4

]
.
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XII: (15 points) Solve the recursive relation, i.e., find an for arbitrary values of n,

an+1 = 8an + 9an−1

with a0 = a1 = 1.

Writing

~xn =

[
an

an−1

]
we can write the recursion as

~xn+1 = A~xn

where

A =

[
8 9

1 0

]
.

The solution can be gotten via

~xn = An−1~x1 .

A is diagonalized by

A =

[
9 −1

1 1

][
9 0

0 −1

]
1

10

[
1 1

−1 9

]
.

Hence

An−1 =

[
9 −1

1 1

][
9n−1 0

0 (−1)n−1

]
1

10

[
1 1

−1 9

]

Applying this to the initial condition ~x1 =

[
1

1

]
we find that

an =
1

5
(9n + 4(−1)n) .


