
Practice Test 2 for Calculus II, Math 1502, September 29, 2010

Name:

Section:

Name of TA:

This test is to be taken without calculators and notes of any sorts. The
allowed time is 50 minutes. Provide exact answers; not decimal approxi-
mations! For example, if you mean

√
2 do not write 1.414 . . .. Show your

work, otherwise credit cannot be given.
Write your name, your section number as well as the name of
your TA on EVERY PAGE of this test. This is very important.



Name:

Section:

Name of TA:

I: (25 points) Decide whether the following series converge or diverge: State
which kind of convergence test you are using.

a)
∞∑

k=0

(3k)!k!
[(2k)!]2

Because of the factorials, it is natural to use the ratio test: We have to
compute

ak+1

ak
=

(3(k + 1))!(k + 1)!
[(2(k + 1))!]2

[(2k)!]2

(3k)!k!

Now
(3(k + 1))! = (3k + 3)! = (3k + 3)(3k + 2)(3k + 1)(3k)! ,

(k + 1)! = (k + 1)k! ,

and
[(2(k + 1))!]2 = [(2k + 2)!]2 = [(2k + 2)(2k + 1)(2k)!]2

= (2k + 2)2(2k + 1)2[(2k)!]2 .

Thus
ak+1

ak
=

(3k + 3)(3k + 2)(3k + 1)(k + 1)
(2k + 2)2(2k + 1)2

.

As k →∞ we find

lim
k→∞

ak+1

ak
=

33

24
=

27
16

> 1 .

Thus the series is divergent.
b)

∞∑
k=2

log
(

1− 1
k2

)



The ratio test as well as the root test are not conclusive in this example.
However, since

1− 1
k2

=
k2 − 1
k2

=
(k + 1)(k − 1)

k2

we find that

log
(

1− 1
k2

)
= log(k + 1) + log(k − 1)− 2 log k

and maybe one can reduce the problem to telescoping sum. Thus, the N -th
partial sum is given by

N∑
k=2

[log(k + 1) + log(k − 1)− 2 log k] .

Now, we pull this sum apart and get

N∑
k=2

log(k + 1) +
N∑

k=2

log(k − 1)− 2
N∑

k=2

log k .

Now it is evident what is going on. Shifting the summation index the fist
sum can be written as

N+1∑
k=3

log k ,

and the second
N−1∑
k=1

log k .

In total we have

N+1∑
k=3

log k +
N−1∑
k=1

log k − 2
N∑

k=2

log k .

Note that the summands with index between k = 3 up to N − 1 show up
in all the sums and hence cancel out. So we are left with

log(N + 1) + logN + log 1 + log 2− 2 log 2− 2 logN ,



which can be rewritten as

log
N(N + 1)

N2
− log 2 .

Thus the N -th partial sum is exactly this expression. As N tends to infinity,
this expression converges to − log 2. Thus, not only do we know that this
series converges, but we also know its limit, namely − log 2.

c)

∞∑
k=2

1
k[log k]2

Likewise, here the ratio and the root test are not conclusive. The
function

1
x[log x]2

is a monotone decreasing positive function for x > 2 and hence we may use
the integral test. The integral∫ N

2

1
x[log x]2

dx

can be easily computed using the substitution u = log x. The

du =
dx

x

and hence ∫ N

2

1
x[log x]2

dx =
∫ log N

log 2

1
u2
du =

1
log 2

− 1
logN

which converges as N →∞. hence the series converges.



Name:

Section:

Name of TA:

II: (25 points) a) Find the Taylor series for the function

f(x) =
∫ x

0

e−y2
dy

Find a polynomial that approximates f(x) on the interval [0, 1] with an
error less than 10−3.

We use the Taylor series

e−z =
∞∑

k=0

(−1)k z
k

k!

and setting z = y2, we find

e−y2
=
∞∑

k=0

(−1)k y
2k

k!

which is an alternating series! The term

y2k

k!

tends to zero as k →∞ for every y. If we set

sN (y) =
N∑

k=0

(−1)k y
2k

k!

we have, by the general theory of alternating series that∣∣∣e−y2
− sN (y)

∣∣∣ ≤ y2N+2

(N + 1)!
.



Now∣∣∣∣∫ x

0

e−y2
dy −

∫ x

0

sN (y)dy
∣∣∣∣ ≤ ∫ x

0

y2N+2

(N + 1)!
dx =

x2N+3

(2N + 3)(N + 1)!
.

Since ∫ x

0

sN (y)dy =
∫ x

0

[
N∑

k=0

(−1)k y
2k

k!

]
dx =

N∑
k=0

(−1)k x2k+1

(2k + 1)k!

we find that∣∣∣∣∣
∫ x

0

e−y2
dy −

N∑
k=0

(−1)k x2k+1

(2k + 1)k!

∣∣∣∣∣ ≤ x2N+3

(2N + 3)(N + 1)!
.

Since 0 ≤ x ≤ 1 the term

x2N+3

(2N + 3)(k + 1)!
≤ 1

(2N + 3)(N + 1)!

With a little trial and error we find that when N = 5

1
(2N + 3)(N + 1)!

=
1

13× (5 + 1)!
=

1
13 · · · 720

=
1

9360

which is a tad bigger than 1
1000 . Hence N = 6 will certainly do it. In fact

we get that for N = 6

1
(2N + 3)(N + 1)!

=
1

15 · 5040
=

1
75600

.

Thus, the polynomial
6∑

k=0

(−1)k x2k+1

(2k + 1)k!

x− x3

3
+
x5

10
− x7

7 · 3!
+

x9

9 · 4!
− x11

11 · 5!
+

x13

13 · 6!



yields all the values of f(x) for 0 ≤ x ≤ 1 with an accuracy less than

1
75600

.

b) Find the Taylor series of the function

1
4− 3x

Write
1

4− 3x
=

1
4

1
1− 3

4x

and use the geometric series to obtain the power series expansion

1
4

∞∑
k=0

(
3
4

)k

xk .

c) Sum the series
∞∑

k=1

(−1)kk

(
3
4

)k

Differentiating the geometric series we find for |x| < 1 that

1
(1− x)2

=
∞∑

k=1

kxk−1 .

Thus, if we replace x by − 3
4 we find

1
(1 + 3

4 )2
=
∞∑

k=1

k(−1)k−1

(
3
4

)k−1

which is almost what we want. All we have to do I to multiply this result
with (−1) 3

4 and we obtain

∞∑
k=1

(−1)kk

(
3
4

)k

= −3
4

1
(1 + 3

4 )2
= −12

49
.
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Name of TA:

III: (25 points) a) Find the interval of convergence of the power series
a)

∞∑
k=1

1
k

(x− 2)k2−k

Using the ratio test we find with

ak =
1
k

1
2k
|x− 2|k

that
ak+1

ak
=
k|x− 2|
2(k + 1)

which converges to |x−2|
2 as k →∞, and this limit has to be strictly less than

1, should this series converge. Hence the interval of convergence contains
the interval (0, 4). it remains the check the endpoints. At x = 4 the series
is the harmonic series which diverges. At x = 0 the series is the alternating
harmonic series, which converges. Thus, the interval of convergence is [0, 4).

b)
∞∑

k=1

[log(k)]k

k!
xk

This is a bit tricky. The numerator calls for the root test and the
denominator for the ratio test. We try the ratio test because it is harder to
understand k-th roots of k! as k →∞. Thus, the ratio we have to study is

(log(k + 1))k+1

(k + 1)(log k)k
|x| = log(k + 1)

(k + 1)

(
log(k + 1)

log k

)k

|x|

The tricky term is(
log(k + 1)

log k

)k

=
(

log k + log(1 + 1
k )

log k

)k

=
(

1 +
log(1 + 1

k )
log k

)k

.



log(1 +
1
k

) =
∫ 1+ 1

k

1

1
x
dx ≤ 1×

∫ 1+ 1
k

1

dx =
1
k
.

Thus (
1 +

log(1 + 1
k )

log k

)k

≤
(

1 +
1

k log k

)k

< (1 +
1
k

)k

for k sufficiently large. Thus, whatever the expression on the left of the
above expression converges to, it must be less than e < 3. The remaining
factor

|x| log(k + 1)
k + 1

tends to zero as k →∞ for every value of x. Hence the interval of conver-
gence is the whole real line.

c)
∞∑

k=2

log k
k2

xk

This example is straightforward. Applying the ratio test we have to
calculate

lim
k→∞

log(k + 1)K2

(k + 1)2 log k
|x| = |x| .

Hence the interval of convergence contains (−1, 1). Next, we consider the
endpoints. At x+ 1 the series has the form

∞∑
k=2

log k
k2

which converges by comparing log k
k2 with 1

k3/2 using the p-test and the com-
parison test. Since the series converges absolutely, we find that it also
converges at x = −1 and hence the interval of convergebce is [−1, 1].
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IV: (25 points) Solve the initial value problems
a)

y′′ − 2y′ + 5y = 0 , y(0) = 0 , y′(0) = 1.

The characteristic equation is

r2 − 2r + 5 = 0 .

The roots are
r1 = 1 + 2i , r2 = 1− 2i .

The solutions re
ex cos 2x , ex sin 2x .

The general solution is

y(x) = ex(c1 cos 2x+ c2 sin 2x) .

Since y(0) = 0, c1 = 0. Since

y′(x) = exc2 sin 2x+ 2exc2 cos 2x

1 = y′(0) = 2c2

it follows that c2 = 1/2. Thus,

y(x) =
1
2
ex sin 2x .

b)
y′ = x(1 + y2) , y(

π

2
) = 0

Separating variables yields

y′

1 + y2
= x



Integrating both sides yields

tan−1 y =
x2

2
+ C

or

y(x) = tan(C +
x2

2
) .

We know that tan(0 = 0 and hence of we choose

C = −π
2

8

we have that

y(x) = tan(
x2

2
− π2

8
)

is the right solution.
c)

y′ + 3xy = x , y(0) = 1

The integrating factor is
e3x2/2

since
d

dx
= 3xe3x2/2 .

Multiplying the equation by e3x2/2 yields

e3x2/2y′ + 3xe3x2/2y = xe3x2/2

or
(e3x2/2y)′ = xe3x2/2

integrating both sides yields

e3x2/2y =
1
3
e3x2/2 + C

and hence
y(x) =

1
3

+ Ce−3x2/2



is the general solution. y(0) = 1 requires that

1 =
1
3

+ C

or that C = 2/3. Hence

y(x) =
1
3

+
2
3
e−3x2/2 .


