Topics for Test 4

You should be familiar with the following concepts:

Subspace S of \mathbb{R}^{n}, which is a subset of \mathbb{R}^{n} with the property that with any two vectors $\vec{x}, \vec{y} \in S, \vec{x}+\vec{y} \in S$ and for all $a \in \mathbb{R}$ and all $\vec{x} \in S, a \vec{x} \in S$. Important examples are the kernel of an $m \times n$ matrix A,i.e., $\operatorname{Ker}(A) \subset \mathbb{R}^{n}$ and $\operatorname{Img}(A) \subset \mathbb{R}^{m}$, the image of an $m \times n$ matrix A.

A spanning set of a subspace $S \subset \mathbb{R}^{n}$, which is a collection of vectors so that every vector in S can be written as a linear combination of them.

A collection of vectors is linearly independent of no vector of this collection can be written as a linear combination of the others. Alternatively, this means that the matrix A which has those vectors as columns has a kernel $\operatorname{Ker}(A)$ that consists only of the zero vector.

A basis of a subspace S is a collection of vectors that spans S and is linearly independent. Every basis of the subspace S has the same number of vectors and this number is called the dimension of S.

For an $m \times n$ matrix A there are is the important dimension formula

$$
\operatorname{dim}(\operatorname{Ker}(A))+\operatorname{dim}(\operatorname{Img}(A))=n
$$

If S is a subspace of \mathbb{R}^{n} then the orthogonal complement of S, whcih is denoted by S^{\perp} consists of all vectors that are perpendicular to every vector in S. The important theorem here is that

$$
\left[S^{\perp}\right]^{\perp}=S
$$

If A is an $m \times n$ matrix then

$$
\begin{aligned}
& \operatorname{Ker}(A) \oplus \operatorname{Img}\left(A^{T}\right)=\mathbb{R}^{n} \\
& \operatorname{Ker}\left(A^{T}\right) \oplus \operatorname{Img}(A)=\mathbb{R}^{m}
\end{aligned}
$$

The meaning of these formulas is that

$$
\operatorname{Ker}(A)^{\perp}=\operatorname{Img}\left(A^{T}\right)
$$

both are subspaces of \mathbb{R}^{n}. Likewise,

$$
\operatorname{Img}(A)^{\perp}=\operatorname{Ker}\left(A^{T}\right)
$$

An $n \times n$ matrix whose kernel consists only of the zero vector is invertible.

The above concepts have a computational side to them.

Row reduction leads you to see the pivotal columns and the non-pivotal columns. For an $m \times n$ matrix A, the pivotal columns are a basis for $\operatorname{Img}(A)$. The number $r(A)$ of those columns, is called the rank of the matrix A, which equals to the dimension of the image of A, i.e.,

$$
\operatorname{dim}(\operatorname{Img}(A))=r(A)
$$

The number of non-pivotal columns determines the number of free variables which is the same as $\operatorname{dim}(\operatorname{Ker}(A))$.

You can check whether the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$ are linearly independent by computing the kernel of the matrix $A=\left[\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right]$. If the kernel consists only of the zero vector, then the vectors are linearly independent. So, row reduction is important!

Very important are the least square problems. The normal equation

$$
A^{T} A \vec{x}=A^{T} \vec{b}
$$

has always a solution, which in general is not unique. If \vec{x}^{*} denotes the solution, then
is the vector in $\operatorname{Img}(A)$ that is closest to the vector \vec{B}.

This leads to the projection onto $\operatorname{Img}(A)$,

$$
P=A\left(A^{T} A\right)^{-1} A^{T}
$$

A nicer way of computing such projections as the Gram-Schmidt procedure, which allows from a spanning set $\vec{v}_{1}, \ldots, \vec{v}_{\ell}$ to obtain an orthonormal basis $\vec{u}_{1}, \ldots, \vec{u}_{k}$ where $k \leq \ell$. Note that $k=\ell$ if the v -vectors form a basis.

The matrix

$$
Q=\left[\vec{u}_{1}, \ldots, \vec{u}_{k}\right]
$$

is an isometry and the matrix $A=\left[\vec{v}_{1}, \ldots, \vec{v}_{\ell}\right]$ can be written as

$$
A=Q R
$$

the $Q R$ factorization where R is an upper triangular matrix. We have that

$$
R=Q^{T} A
$$

If a subspace S is spanned by $\vec{v}_{1}, \ldots, \vec{v}_{\ell}$ then

$$
Q Q^{T}
$$

is the orthogonal projection onto $\operatorname{Img}(A)$.

Least square problems can be elegantly solved once the $Q R$ factorization is available. The equation

$$
A \vec{x}=Q Q^{T} \vec{b}
$$

has always a solution, since $Q Q^{T} \vec{b} \in \operatorname{Img}(A)$. Hence

$$
Q^{T} A \vec{x}=R \vec{x}=Q^{T} \vec{b}
$$

and R is already in row reduced form.

