Homework 1, due Tuesday September 10

I: a) Show that the vectors $e_k = (0, 0, ..., 1, 0, 0...)$ where the number 1 is in the k-th position, form a Schauder basis in ℓ^p for $1 \le p < \infty$.

b) Show that the vectors e_k above are not a Schauder basis for ℓ^{∞} .

II: Show that the subspace $c_0 \subset \ell^{\infty}$ consisting of sequences of scalars that converge to zero, is a Banach space in the norm inherited from ℓ^{∞} .

III: Let $T: C[0,1] \to C[0,1]$ be defined by

$$Tx(t) = \int_0^t x(\tau) d\tau \; .$$

Find R(T) and $T^{-1}: R(T) \to C[0, 1]$. Is it bounded?

IV: Consider the operator $T: \ell^{\infty} \to \ell^{\infty}$ defined by $Tx = (\eta_i), \eta_i = \frac{\zeta_i}{i}, (\zeta_i) = x$.

- a) Show that it is linear and bounded linear operator.
- b) Is the range R(T) closed?
- c) Find the inverse operator $T^{-1}: R(T) \to \ell^{\infty}$. Is it bounded?