Homework 1 , due Tuesday September 10

I: a) Show that the vectors $e_{k}=(0,0, \ldots, 1,0,0 \ldots)$ where the number 1 is in the k-th position, form a Schauder basis in ℓ^{p} for $1 \leq p<\infty$.
b) Show that the vectors e_{k} above are not a Schauder basis for ℓ^{∞}.

II: Show that the subspace $c_{0} \subset \ell^{\infty}$ consisting of sequences of scalars that converge to zero, is a Banach space in the norm inherited from ℓ^{∞}.

III: Let $T: C[0,1] \rightarrow C[0,1]$ be defined by

$$
T x(t)=\int_{0}^{t} x(\tau) d \tau
$$

Find $R(T)$ and $T^{-1}: R(T) \rightarrow C[0,1]$. Is it bounded?

IV: Consider the operator $T: \ell^{\infty} \rightarrow \ell^{\infty}$ defined by $T x=\left(\eta_{i}\right), \eta_{i}=\frac{\zeta_{i}}{i},\left(\zeta_{i}\right)=x$.
a) Show that it is linear and bounded linear operator.
b) Is the range $R(T)$ closed?
c) Find the inverse operator $T^{-1}: R(T) \rightarrow \ell^{\infty}$. Is it bounded?

