I: Let \mathcal{H} be a Hilbert space and let $T: \mathcal{H} \rightarrow \mathcal{H}$ be a linear operator such that for all $x, y \in \mathcal{H}$

$$
\langle T x, y\rangle=\langle x, T y\rangle .
$$

Prove that T is bounded.

II: Let \mathcal{H} be a complex Hilbert space and $A \subset \mathbb{C}$ a compact set. Construct a linear bounded operator T such that $\sigma(T)=A$.

III: Consider the finite dimensional space \mathbb{C}^{n} endowed with the inner product

$$
\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \overline{w_{j}} .
$$

On this space, let A be any self-adjoint operator. Find the spectral family for this operator.

IV: Solve problem 4 on page 385 in Kreyszig.

V: Solve problem 9 on page 475 in Kreyszig.

