1. Quiz 4 Solutions

Problem 1:

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 0 & 2 & 3 \\
0 & 0 & 4 & 6
\end{array}\right]
$$

a) Find a basis for the column space of A. Row reduction leads to

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 0 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The first and third are pivot columns and hence

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
4
\end{array}\right]
$$

form a basis for the column space.
b) Find a basis for the null space of A. The second and fourth variable are free and hence $x_{3}=-\frac{3}{2} x_{4}$ and $x_{1}=-2 x_{2}-3 x_{3}-4 x_{4}=-2 x_{2}+\frac{9}{2} x_{4}-4 x_{4}=-2 x_{2}+\frac{1}{2} x_{4}$. Hence any solution is of the form

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
-\frac{3}{2} \\
1
\end{array}\right]
$$

and the two vectors are a basis for the null space.

Problem 2: a)

$$
\begin{gathered}
A\left[\begin{array}{lll}
2 & 1 & 4 \\
3 & 4 & 2 \\
5 & 5 & 6
\end{array}\right], \vec{u}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right], \vec{v}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] . \\
A \vec{u}=\left[\begin{array}{c}
9 \\
12 \\
21
\end{array}\right], A \vec{v}=\left[\begin{array}{l}
11 \\
11 \\
22
\end{array}\right]
\end{gathered}
$$

Hence, \vec{u} is not and eigenvector and \vec{v} is an eigenvector with eigenvalue 11 .
b) Find the volume of the parallelepiped determined by

$$
\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right]_{1} \text { and }\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]
$$

Have to compute the

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right] \\
=1 \operatorname{det}\left[\begin{array}{cc}
1 & -2 \\
-2 & 1
\end{array}\right]-2 \operatorname{det}\left[\begin{array}{cc}
2 & -2 \\
2 & 1
\end{array}\right]+2 \operatorname{det}\left[\begin{array}{cc}
2 & 1 \\
2 & -2
\end{array}\right]
\end{gathered}
$$

which equals -27 . Hence the volume is 27 units.

Problem 3: Let

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & -1 & 3
\end{array}\right]
$$

Find the eigenvalues of A. For each eigenvalue find a basis for the corresponding eigenspace.

1 is clearly an eigenvalue and \vec{e}_{1} is a corresponding eigenvector.

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 2 & 3 \\
0 & 1-\lambda & 1 \\
0 & -1 & 3-\lambda
\end{array}\right]=(1-\lambda)\left[\lambda^{2}-4 \lambda+4\right]=(1-\lambda)(\lambda-2)^{2}
$$

Hence 2 is a double eigenvalue. Row reducing

$$
\left[\begin{array}{ccc}
1-2 & 2 & 3 \\
0 & 1-2 & 1 \\
0 & -1 & 3-2
\end{array}\right]
$$

yields

$$
\left[\begin{array}{ccc}
-1 & 2 & 3 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

and x_{3} is the only free variable and the solutions are

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right]
$$

hence the vector $\left[\begin{array}{l}5 \\ 1 \\ 1\end{array}\right]$ yields a basis for the eigenspace associated with the eigenvalue 2. The vector

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

is a basis for the eigenspace associated with the eigenvalue 1 .

Extra credit: Find a 2×2 matrix such that the column space is the line $x_{1}+2 x_{2}=0$ and the null space is the line $x_{1}=x_{2}$.

The vector $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ is a basis for the column space and the vector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is a basis for the null space of the matrix. The first condition says that the matrix has to be of the form

$$
\left[\begin{array}{cc}
-2 a & -2 b \\
a & b
\end{array}\right]
$$

where a, b should not both be zero, and the second condition requires that $a+b=0$. Hence the set of matrices fulfilling the requirements are of the form

$$
a\left[\begin{array}{cc}
-2 & 2 \\
1 & -1
\end{array}\right]
$$

where $a \neq 0$.

