Practice Test 4B for Calculus II, Math 1502, November 9, 2013

PRINT Name:

PRINT Section:

PRINT Name of TA:

This test is to be taken without calculators and notes of any sorts. The allowed time is 50 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$... Show your work, otherwise credit cannot be given.
PRINT your name, your section number as well as the name of your TA on EVERY PAGE of this test. This is very important.

PRINT Name:

PRINT Section:

PRINT Name of TA:

I: a) (10 points) Let S_{1} and S_{2} be two subspaces of \mathcal{R}^{n}. Show that the intersection of these subspaces is again a subspace.
Suppose \vec{v}_{1} and \vec{v}_{2} are vectors both in S_{1} and in S_{2}. Then $\vec{v}_{1}+\vec{v}_{2}$ is in S_{1} since S_{1} is a subspace. Moreover, $\vec{v}_{1}+\vec{v}_{2}$ is in S_{2} since S_{2} is a subspace. Hence $\vec{v}_{1}+\vec{v}_{2}$ is in both and hence in the intersection. Likewise, suppose \vec{u} is a vector in the intersection of S_{1} and S_{2} and c a scalar. Then $c \vec{u}$ is in S_{1} since S_{1} is a subspace. Of course it is also in S_{2} since S_{2} is a subspace. Thus $c \vec{u}$ is in both and hence in the intersection. Thus, the intersection of S_{1} and S_{2} is a subspace. Note, the union of the two subspaces is not a subspace (why?).
b) (10 points) Consider the subspaces S_{1} given by the span of the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

and S_{2} which is given by the span of the vectors

$$
\vec{w}_{1}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right], \vec{w}_{2}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] .
$$

Find the intersection of S_{1} and S_{2}.
We have to find all vectors that are in the span of \vec{v}_{1}, \vec{v}_{2} as well as in the span of \vec{w}_{1}, \vec{w}_{2}, i.e., we have to solve the system of equation given by

$$
s \vec{v}_{1}+t \vec{v}_{2}=x \vec{w}_{1}+y \vec{w}_{2} .
$$

The solutions of this system we can get by considering the augmented matrix

$$
\left[\begin{array}{cccc}
1 & 3 & -2 & -1 \\
2 & 2 & -1 & -1 \\
3 & 1 & 0 & -2
\end{array}\right]
$$

which row reduces to

$$
\left[\begin{array}{cccc}
1 & 3 & -2 & -1 \\
0 & -4 & 3 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and backward substitution yields that

$$
\left[\begin{array}{l}
s \\
t \\
x \\
y
\end{array}\right]=x\left[\begin{array}{c}
-1 \\
3 \\
4 \\
0
\end{array}\right]
$$

Thus, we have that

$$
-x \vec{v}_{1}+x 3 \vec{v}_{2}=4 x \vec{w}_{1}
$$

where x is any number. Hence, the intersection is any multiple of the vector \vec{w}_{1}, i.e.,

$$
x\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right], x \text { in } \mathcal{R}
$$

and hence a line passing through the origin.

PRINT Name:

PRINT Section:

PRINT Name of TA:

II: a) (10 points) By computing the determinant of a matrix decide for which values of a the vectors

$$
\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
7 \\
a \\
1
\end{array}\right],\left[\begin{array}{c}
-10 \\
6 \\
6
\end{array}\right]
$$

are linearly dependent.
The determinant is given by $26(a-3)$ and hence vanishes precisely for $a=3$. Hence only for $a=3$ are the vectors linearly dependent.
b) (10 points) By making as few computations as possible compute the determinant of the matrix

$$
\left[\begin{array}{lllll}
5 & 6 & 6 & 6 & 6 \\
3 & 4 & 4 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 & 0 \\
4 & 5 & 5 & 5 & 4
\end{array}\right]
$$

First we swap row one and row three. In the resulting matrix we swap row two and row four. In this new matrix we swap row three and row four and get

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 & 0 \\
3 & 4 & 4 & 0 & 0 \\
5 & 6 & 6 & 6 & 6 \\
4 & 5 & 5 & 5 & 4
\end{array}\right]
$$

The determinant of this matrix is

$$
1 \cdot 3 \cdot 4 \cdot \operatorname{det}\left[\begin{array}{ll}
6 & 6 \\
5 & 4
\end{array}\right]=-72 .
$$

Since we had to use an odd number of row swaps the determinant is 72 .

PRINT Name:

PRINT Section:

PRINT Name of TA:

III: a) (10 points) Consider the matrices

$$
E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
4 & 0 & 1
\end{array}\right] \text { and } E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Compute the inverse of $E_{1} \cdot E_{2}$.
The inverse matrices of E_{1} and E_{2} are

$$
E_{1}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right], E_{2}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and hence

$$
\left(E_{1} E_{2}\right)^{-1}=E_{2}^{-1} E_{1}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right]
$$

b) (10 points) Given

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & -1 & 0 \\
0 & 2 & 1
\end{array}\right] \text { and } U=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

Find all the vectors $\vec{b}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ so that the equation

$$
L U \vec{x}=\vec{b}
$$

has a solution.

We have to solve $L \vec{y}=\vec{b}$ and then $U \vec{x}=\vec{y}$. In order that there exists a solution we must have that the system $U \vec{x}=\vec{y}$ is consistent, i.e., the third component of \vec{y} must vanish. Setting

$$
\vec{y}=\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]
$$

we have that $u=a, v=2 a-b, w=c-4 a+2 b$. Hence the set of vectors \vec{b} for which the equation $L U \vec{x}=\vec{b}$ has a solution are all those that satisfy the equation $c-4 a+2 b=0$.

PRINT Name:

PRINT Section:

PRINT Name of TA:

IV: (20 points) Find the eigenvalues and eigenvectors of the matrix

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 2 \\
3 & 2 & 1
\end{array}\right]
$$

(Hint: One eigenvector is easy to guess).
Obviously

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

is an eigenvector with eigenvalue 6. Now we calculate the characteristic polynomial

$$
\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 2 & 3 \\
2 & 2-\lambda & 2 \\
3 & 2 & 1-\lambda
\end{array}\right]=-\lambda\left(\lambda^{2}-4 \lambda-12\right)=-\lambda(\lambda-6)(\lambda+2)
$$

hence the eigenvlaues are $0,6,-2$. The eigenvectors in the same order of appearance are

$$
\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

PRINT Name:

PRINT Section:

PRINT Name of TA:

V: (5 points) each. Prove or find a counterexample. Let A be an $n \times m$ matrix.
a) $\operatorname{Nul}(A)$ is a subspace of \mathcal{R}^{n}.

False. $\operatorname{Nul}(A)$ is a subspace of $\mathcal{R}^{m} . \operatorname{Col}(A)$ is a subspace of \mathcal{R}^{n}.
b) $\operatorname{dim} \operatorname{Col}(A)$ is less than the smaller of the numbers n and m.

True. Since $\operatorname{Col}(A)$ is a subspace of \mathcal{R}^{n} we have that $\operatorname{dim} \operatorname{Col}(A) \leq n$. Since there are m columns in the matrix A, the dimension of $\operatorname{dim} \operatorname{Col}(A)$ cannot be bigger than m and hence $\operatorname{dim} \operatorname{Col}(A) \leq m$.
c) If the dimension of $\operatorname{Col}(A)$ is 1 , then the dimension of $N u l(A)$ is $m-1$. True. We have that

$$
\operatorname{dim} \operatorname{Col}(A)+\operatorname{dim} N u l(A)=m \text { or } \operatorname{dim} N u l(A)=m-\operatorname{dim} \operatorname{Col}(A) .
$$

d) If λ is an eigenvalue of A then $\operatorname{dim} N u l(A-\lambda I)=1$.

This is false. Just take A to be the 2×2 identity matrix. Here $\operatorname{dim} N u l(A-$ $2 I)=2$.

