
Homework I, Solutions

I: (15 points) Exercise on lower semi-continuity: Let X be a normed space and f :
X → R be a function. We say that f is lower semi - continuous at x0 if for every ε > 0 there
exists δ > 0 so that

f(x)− f(x0) > −ε (1)

whenever ‖x0 − x‖ < δ. We also say that f is lower semi-continuous if f is lower semi-
continuous at every point of X.

a) Prove that f is lower semi-continuous at x0 if and only if for every sequence xn with
limn→∞ xn = x0, it follows that lim infn→∞ f(xn) ≥ f(x0).

Assume that f is lower semi-continuous. If ‖xn − x0‖ → 0 as n→∞ then for any given ε
there exists N so that ‖xn − x0‖ < δ for all n > N . Hence if f is lower semi-continuous,

f(xn) > f(x0)− ε
for all n > N and hence

lim inf
n→∞

f(xn) ≥ f(x0)− ε .

Since ε is arbitrary the result follows.
For the converse, assume that there is an x0 at which f is not lower semi-continuous. This

means that there exists ε > 0 so that for any δ > 0, there exists x with ‖x − x0‖ < δ such
that

f(x)− f(x0) ≤ −ε .
This means that there is a sequence xn converging to x0 so that

f(xn)− f(x0) ≤ −ε
for all n = 1, 2, . . . . In particular

f(x0 ≤ lim inf
n→∞

f(xn) ≤ f(x0 − ε .

A contradiction.

b) Prove that f is lower semi-continuous if and only if the set

{x ∈ X : f(x) > t}
is open for every value of t.

Assume that f is lower semi-continuous. Pick any x0 ∈ {x ∈ X : f(x) > t}. Since f(x0) > t,
we also have that f(x0) > t + ε for ε sufficiently small. By assumption there exists δ > 0 so
that f(x) > f(x0)− ε > t for all x with ‖x− x0‖ < δ. Hence {x ∈ X : f(x) > t} is open.

To see the converse, assume that {x ∈ X : f(x) > t} is open for all t ∈ R. Suppose that
there exists x0 at which f is not lower semi-continuous. Then there exists ε > 0 so that for
all δ > 0 there exists x with ‖x− x0‖ < δ such that

f(x)− f(x0) ≤ −ε .
Pick t = f(x0)− ε/2. Then we there exists a sequence xn converging to x0 so that

f(xn) ≤ f(x0)− ε = t− ε/2
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which contradicts the fact that {x ∈ X : f(x) > t} is open.

II: (20 points) The space H1(Ω): Let Ω ⊂ Rn be an open set and consider L2(Ω, dx).
Denote by C∞c (Ω) the set of infinitely differentiable functions on Ω that have compact support.
Note that, by definition, a continuous function has compact support if the closure of the set
where f does not vanish is compact. Here are some facts about L2(Ω, dx) and C∞c (Ω): As
you know L2(Ω, dx) is a Hilbert space with inner product

(f, h) =

∫
Ω

f(x)h(x)dx .

Another useful fact is that C∞c (Ω) is dense in L2(Ω, dx).

We define the space H1(Ω) to consist of all functions f ∈ L2(Ω, dx) with the property that
there exist functions gif ∈ L2(Ω, dx), i = 1 . . . n such that∫

Ω

f(x)
∂φ

∂xi
(x)dx = −

∫
Ω

gif (x)φ(x)dx , i = 1. . . . , n .

The expression

(f, h)1 =

∫
R
f(x)h(x)dx+

n∑
i=1

∫
R
gif (x)gih(x)dx

defines obviously an inner product on H1(Ω).

a) Prove that the “gradient” gif , i = 1, . . . , n is unique.

Suppose that there exists another ‘gradient’ hif , i = 1, . . . , n. Then we have that∫
Ω

(gif − hif )φdx = 0 , i = 1, . . . , n

for all φ ∈ C∞c (Ω). Fix the index i and set ui := gif − hif . The fact that C∞c (Ω) is dense in

L2(Ω, dx) means that for any ε > 0 there exists φi so that

‖ui − φi‖ < ε .

We shall use the sign ‖ · ‖ to denote the norm in L2(Ω). Hence

0 =

∫
Ω

uiφidx =

∫
Ω

ui(φi − ui)dx+ ‖ui‖2

so that

‖ui‖2 = −
∫

Ω

ui(φi − ui)dx ≤ ‖ui‖‖ui − φi‖

by Schwarz’s inequality. Thus, if ui 6= 0 we have that

‖ui‖ ≤ ‖ui − φi‖ < ε

which proves the claim since ε is arbitrary.

b) Prove that H1(Ω) is a Hilbert space.
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Let fn be a Cauchy sequence in H1(Ω). This means that

‖fn − fm‖2 +
n∑

i=1

‖gifn − g
i
fm‖

2 → 0

as n,m → ∞. This means that fn converges to f in L2(Ω) and gifn converges to some gi in

L2(Ω). It remains to show that ∫
Ω

f
∂φ

∂xi
dx = −

∫
Ω

giφdx .

To see this note that∣∣∣∣∫
Ω

fn
∂φ

∂xi
dx−

∫
Ω

f
∂φ

∂xi
dx

∣∣∣∣ =

∣∣∣∣∫
Ω

[fn − f ]
∂φ

∂xi
dx

∣∣∣∣ ≤ ‖f − fn‖‖ ∂φ∂xi‖ → 0

as n→∞. Hence∫
Ω

f
∂φ

∂xi
dx = lim

n→∞

∫
Ω

fn
∂φ

∂xi
dx = − lim

n→∞

∫
Ω

gifnφdx = −
∫

Ω

giφdx ,

where we used that ∣∣∣ ∫
Ω

gifnφdx−
∫

Ω

giφdx
∣∣∣ ≤ ‖gifn − gi‖‖φ‖ .

III: (10 points) On L2(R) consider the sequences fj(x) = f(x − j) and gj(x) = j1/2g(jx)
where f, g are fixed functions in L2(R). Show that both sequences converge weakly to zero as
j →∞.

The idea is that for a function h ∈ L2(R) the sequence (fj, h) tends to zero since the overlap
between fj and h tends to disappear. The problem is that the functions under consideration
are only in L2(R) and they do not have compact support. To really prove this one argues
via approximations. Pick any ε > 0. There exists φ, ψ ∈ C∞c (R) so that ‖f − ψ‖ < ε and
‖h − φ‖ < ε. If we set ψj(x) = ψ(x − j) we have that ‖fj − ψj‖ = ‖f − ψ‖ by changing
variables in the integration. Hence

|(fj, h)| = |(fj − ψj, h) + (ψj, h− φ) + (ψj, φ)| ≤ ‖fj − ψj‖‖h‖+ ‖ψj‖‖h− φ‖+ |(ψj, φ)|

≤ ε(‖h‖+ ‖ψ‖) + |(ψj, φ)|
For j large enough |(ψj, φ)| = 0 since the two functions φ and ψ have compact support and
then the supports of φ and ψ(x− j) do not overlap. Thus for j sufficiently large

|(fj, h)| ≤ ε(‖h‖+ ‖ψ‖)
and since ε is arbitrary this means that limj→∞ |(fj, h)| = 0.

For the second problem we proceed exactly the same way except that we set ψj(x) =
j1/2ψ(jx) so that ‖gj − ψj‖ = ‖g − ψ‖. Hence

|(gj, h)| ≤ ε(‖h‖+ ‖ψ‖) + |(ψj, φ)|
Now

|(ψj, φ)| ≤ j1/2

∫
|ψ(jx)||φ(x)|dx ≤ Cj1/2

∫
|ψ(jx)|dx = Cj−1/2

∫
|ψ(x)|dx

where C = maxx |φ(x)|. The rest follows as before.
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IV (15 points) : Let fj, gj be any two strongly convergent sequences in an arbitrary infinite
dimensional Hilbert space H and hj, kj any two weakly convergent sequences in H . Prove or
find a counterexample:

a) The sequence (fj, gj) is always convergent.
Yes. Assume that fj resp. gj converge strongly to f resp. g. Then

|(fj, gj)− (f, g)| = |(fj − f, gj) + (f, gj − g)| ≤ ‖f − fj‖‖g‖+ ‖g − gj‖‖fj‖
which converges to zero since ‖fj‖ stays bounded.

b) The sequence (fj, hj) is always convergent.
Yes. Suppose that hj converges weakly to h. Then

|(fj, hj)− (f, h)| = |(fj − f, hj) + (f, hj − h)| ≤ ‖f − fj‖‖hj‖+ |(f, hj − h)| → 0

as n→∞ since ‖hj‖ is bounded by the uniform boundedness principle.

c) The sequence (hj, kj) is always convergent.
No. Take hj to be an orthonormal sequence, (hj, hk) = δj,k and define kj = hj for j even

and kj = 0 for j odd. Both sequences converge weakly to zero. But (hj, kj) is a sequence that
alternates between 0 and 1 and hence does not converge.

Here (·, ·) denotes the inner product in H.

V: Extra credit: This exercise is difficult. Let X be a complete normed space (which
we assume for simplicity to be real) and assume that the norm satisfies the parallelogram
identity, i.e.,

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

for all x, y ∈ X. Prove that X is a Hilbert space, i.e., there exists an inner product (x, y) such

that ‖x‖ =
√

(x, x).

Solution: We define

f(x, y) =
1

2
(‖x+ y‖2 − ‖x‖2 − ‖y‖2)

First we show that f(x, y) is additive in each variable. Clearly f is symmetric and hence it
suffices to do this for the first variable. We have to show that

0 = f(x+ y, z)− f(x, z)− f(y, z)

=
1

2
(‖x+ y + z‖2 − ‖x+ y‖2 − ‖x+ z‖2 − ‖y + z‖2 + ‖x‖2 + ‖y‖2 + ‖z‖2

Now set

a =
x+ y

2
, b =

x+ z

2
, c =

y + z

2
.

Using this notation we have to show that

‖a+ b+ c‖2 + ‖a+ b− c‖2 + ‖a+ c− b‖2 + ‖b+ c− a‖2 = 4‖a‖2 + 4‖b‖2 + 4‖c‖2 .
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Now using the parallelogram identity

‖a+ b+ c‖2 + ‖a+ b− c‖2 = 2‖a+ b‖2 + 2‖c‖2

and

‖a+ c− b‖2 + ‖b+ c− a‖2 = ‖c+ (a− b)‖2 + ‖c− (a− b)‖2 = 2‖c‖2 + 2‖a− b‖2 ,

and
2‖a+ b‖2 + 2‖c‖2 + 2‖c‖2 + 2‖a− b‖2 = 4‖a‖2 + 4‖b‖2 + 4‖c‖2 .

It remains to show that f(x, y) is homogeneous in each variable. By symmetry it suffices to
show this for the first variable. If p is any integer we have by induction that

f(px, y) = pf(x, y)

and for q 6= 0 an integer

qf(
x

q
, y) = f(x, y) or f(

x

q
, y) =

1

q
f(x, y)

so that
f(rx, y) = rf(x, y)

for any rational number r. The function x→ f(x, y) is continuous. To see this note that

|f(x1, y)− f(x2, y)| = 1

2

∣∣‖x1 + y‖2 − ‖x1‖2 − ‖x2 + y‖2 + ‖x2‖2
∣∣

=
1

2
(‖x1 + y‖+ ‖x2 + y‖)(‖x1 + y‖ − ‖x2 + y‖)− 1

2
(‖x1‖+ ‖x2‖)(‖x2‖ − ‖x1‖)

≤ (‖x1‖+ ‖x2‖+ ‖y‖) ‖x2 − x1‖
by the triangle inequality.

For c real, pick a sequence rn of rational numbers that converge to c. Clearly

cf(x, y) = lim
n→∞

rnf(x, y) = lim
n→∞

f(rnx, y) = f(cx, y) .

Hence, f(x, y) satisfies the conditions of an inner product.


