Homework I, Solutions

I: (15 points) Exercise on lower semi-continuity: Let X be a normed space and f : $X \rightarrow \mathbb{R}$ be a function. We say that f is lower semi - continuous at x_{0} if for every $\varepsilon>0$ there exists $\delta>0$ so that

$$
\begin{equation*}
f(x)-f\left(x_{0}\right)>-\varepsilon \tag{1}
\end{equation*}
$$

whenever $\left\|x_{0}-x\right\|<\delta$. We also say that f is lower semi-continuous if f is lower semicontinuous at every point of X.
a) Prove that f is lower semi-continuous at x_{0} if and only if for every sequence x_{n} with $\lim _{n \rightarrow \infty} x_{n}=x_{0}$, it follows that $\liminf _{n \rightarrow \infty} f\left(x_{n}\right) \geq f\left(x_{0}\right)$.

Assume that f is lower semi-continuous. If $\left\|x_{n}-x_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$ then for any given ε there exists N so that $\left\|x_{n}-x_{0}\right\|<\delta$ for all $n>N$. Hence if f is lower semi-continuous,

$$
f\left(x_{n}\right)>f\left(x_{0}\right)-\varepsilon
$$

for all $n>N$ and hence

$$
\liminf _{n \rightarrow \infty} f\left(x_{n}\right) \geq f\left(x_{0}\right)-\varepsilon
$$

Since ε is arbitrary the result follows.
For the converse, assume that there is an x_{0} at which f is not lower semi-continuous. This means that there exists $\varepsilon>0$ so that for any $\delta>0$, there exists x with $\left\|x-x_{0}\right\|<\delta$ such that

$$
f(x)-f\left(x_{0}\right) \leq-\varepsilon .
$$

This means that there is a sequence x_{n} converging to x_{0} so that

$$
f\left(x_{n}\right)-f\left(x_{0}\right) \leq-\varepsilon
$$

for all $n=1,2, \ldots$ In particular

$$
f\left(x_{0} \leq \liminf _{n \rightarrow \infty} f\left(x_{n}\right) \leq f\left(x_{0}-\varepsilon .\right.\right.
$$

A contradiction.
b) Prove that f is lower semi-continuous if and only if the set

$$
\{x \in X: f(x)>t\}
$$

is open for every value of t.
Assume that f is lower semi-continuous. Pick any $x_{0} \in\{x \in X: f(x)>t\}$. Since $f\left(x_{0}\right)>t$, we also have that $f\left(x_{0}\right)>t+\varepsilon$ for ε sufficiently small. By assumption there exists $\delta>0$ so that $f(x)>f\left(x_{0}\right)-\varepsilon>t$ for all x with $\left\|x-x_{0}\right\|<\delta$. Hence $\{x \in X: f(x)>t\}$ is open.

To see the converse, assume that $\{x \in X: f(x)>t\}$ is open for all $t \in \mathbb{R}$. Suppose that there exists x_{0} at which f is not lower semi-continuous. Then there exists $\varepsilon>0$ so that for all $\delta>0$ there exists x with $\left\|x-x_{0}\right\|<\delta$ such that

$$
f(x)-f\left(x_{0}\right) \leq-\varepsilon .
$$

Pick $t=f\left(x_{0}\right)-\varepsilon / 2$. Then we there exists a sequence x_{n} converging to x_{0} so that

$$
f\left(x_{n}\right) \leq f\left(x_{0}\right)-\varepsilon=t-\varepsilon / 2
$$

which contradicts the fact that $\{x \in X: f(x)>t\}$ is open.

II: (20 points) The space $H^{1}(\Omega)$: Let $\Omega \subset \mathbb{R}^{n}$ be an open set and consider $L^{2}(\Omega, d x)$. Denote by $C_{c}^{\infty}(\Omega)$ the set of infinitely differentiable functions on Ω that have compact support. Note that, by definition, a continuous function has compact support if the closure of the set where f does not vanish is compact. Here are some facts about $L^{2}(\Omega, d x)$ and $C_{c}^{\infty}(\Omega)$: As you know $L^{2}(\Omega, d x)$ is a Hilbert space with inner product

$$
(f, h)=\int_{\Omega} f(x) \overline{h(x)} d x
$$

Another useful fact is that $C_{c}^{\infty}(\Omega)$ is dense in $L^{2}(\Omega, d x)$.

We define the space $H^{1}(\Omega)$ to consist of all functions $f \in L^{2}(\Omega, d x)$ with the property that there exist functions $g_{f}^{i} \in L^{2}(\Omega, d x), i=1 \ldots n$ such that

$$
\int_{\Omega} f(x) \frac{\partial \phi}{\partial x_{i}}(x) d x=-\int_{\Omega} g_{f}^{i}(x) \phi(x) d x, i=1 \ldots, n
$$

The expression

$$
(f, h)_{1}=\int_{\mathbb{R}} f(x) \overline{h(x)} d x+\sum_{i=1}^{n} \int_{\mathbb{R}} g_{f}^{i}(x) \overline{g_{h}^{i}(x)} d x
$$

defines obviously an inner product on $H^{1}(\Omega)$.
a) Prove that the "gradient" $g_{f}^{i}, i=1, \ldots, n$ is unique.

Suppose that there exists another 'gradient' $h_{f}^{i}, i=1, \ldots, n$. Then we have that

$$
\int_{\Omega}\left(g_{f}^{i}-h_{f}^{i}\right) \phi d x=0, i=1, \ldots, n
$$

for all $\phi \in C_{c}^{\infty}(\Omega)$. Fix the index i and set $u_{i}:=g_{f}^{i}-h_{f}^{i}$. The fact that $C_{c}^{\infty}(\Omega)$ is dense in $L^{2}(\Omega, d x)$ means that for any $\varepsilon>0$ there exists ϕ^{i} so that

$$
\left\|u_{i}-\phi^{i}\right\|<\varepsilon
$$

We shall use the sign $\|\cdot\|$ to denote the norm in $L^{2}(\Omega)$. Hence

$$
0=\int_{\Omega} u^{i} \phi^{i} d x=\int_{\Omega} u^{i}\left(\phi^{i}-u^{i}\right) d x+\left\|u^{i}\right\|^{2}
$$

so that

$$
\left\|u^{i}\right\|^{2}=-\int_{\Omega} u^{i}\left(\phi^{i}-u^{i}\right) d x \leq\left\|u^{i}\right\|\left\|u^{i}-\phi^{i}\right\|
$$

by Schwarz's inequality. Thus, if $u^{i} \neq 0$ we have that

$$
\left\|u^{i}\right\| \leq\left\|u^{i}-\phi^{i}\right\|<\varepsilon
$$

which proves the claim since ε is arbitrary.
b) Prove that $H^{1}(\Omega)$ is a Hilbert space.

Let f_{n} be a Cauchy sequence in $H^{1}(\Omega)$. This means that

$$
\left\|f_{n}-f_{m}\right\|^{2}+\sum_{i=1}^{n}\left\|g_{f_{n}}^{i}-g_{f_{m}}^{i}\right\|^{2} \rightarrow 0
$$

as $n, m \rightarrow \infty$. This means that f_{n} converges to f in $L^{2}(\Omega)$ and $g_{f_{n}}^{i}$ converges to some g^{i} in $L^{2}(\Omega)$. It remains to show that

$$
\int_{\Omega} f \frac{\partial \phi}{\partial x_{i}} d x=-\int_{\Omega} g^{i} \phi d x .
$$

To see this note that

$$
\left|\int_{\Omega} f_{n} \frac{\partial \phi}{\partial x_{i}} d x-\int_{\Omega} f \frac{\partial \phi}{\partial x_{i}} d x\right|=\left|\int_{\Omega}\left[f_{n}-f\right] \frac{\partial \phi}{\partial x_{i}} d x\right| \leq\left\|f-f_{n}\right\|\left\|\frac{\partial \phi}{\partial x_{i}}\right\| \rightarrow 0
$$

as $n \rightarrow \infty$. Hence

$$
\int_{\Omega} f \frac{\partial \phi}{\partial x_{i}} d x=\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} \frac{\partial \phi}{\partial x_{i}} d x=-\lim _{n \rightarrow \infty} \int_{\Omega} g_{f_{n}}^{i} \phi d x=-\int_{\Omega} g^{i} \phi d x
$$

where we used that

$$
\left|\int_{\Omega} g_{f_{n}}^{i} \phi d x-\int_{\Omega} g^{i} \phi d x\right| \leq\left\|g_{f_{n}}^{i}-g^{i}\right\|\|\phi\| .
$$

III: (10 points) On $L^{2}(\mathbb{R})$ consider the sequences $f_{j}(x)=f(x-j)$ and $g_{j}(x)=j^{1 / 2} g(j x)$ where f, g are fixed functions in $L^{2}(\mathbb{R})$. Show that both sequences converge weakly to zero as $j \rightarrow \infty$.

The idea is that for a function $h \in L^{2}(\mathbb{R})$ the sequence $\left(f_{j}, h\right)$ tends to zero since the overlap between f_{j} and h tends to disappear. The problem is that the functions under consideration are only in $L^{2}(\mathbb{R})$ and they do not have compact support. To really prove this one argues via approximations. Pick any $\varepsilon>0$. There exists $\phi, \psi \in C_{c}^{\infty}(\mathbb{R})$ so that $\|f-\psi\|<\varepsilon$ and $\|h-\phi\|<\varepsilon$. If we set $\psi_{j}(x)=\psi(x-j)$ we have that $\left\|f_{j}-\psi_{j}\right\|=\|f-\psi\|$ by changing variables in the integration. Hence

$$
\begin{gathered}
\left|\left(f_{j}, h\right)\right|=\left|\left(f_{j}-\psi_{j}, h\right)+\left(\psi_{j}, h-\phi\right)+\left(\psi_{j}, \phi\right)\right| \leq\left\|f_{j}-\psi_{j}\right\|\|h\|+\left\|\psi_{j}\right\|\|h-\phi\|+\left|\left(\psi_{j}, \phi\right)\right| \\
\leq \varepsilon(\|h\|+\|\psi\|)+\left|\left(\psi_{j}, \phi\right)\right|
\end{gathered}
$$

For j large enough $\left|\left(\psi_{j}, \phi\right)\right|=0$ since the two functions ϕ and ψ have compact support and then the supports of ϕ and $\psi(x-j)$ do not overlap. Thus for j sufficiently large

$$
\left|\left(f_{j}, h\right)\right| \leq \varepsilon(\|h\|+\|\psi\|)
$$

and since ε is arbitrary this means that $\lim _{j \rightarrow \infty}\left|\left(f_{j}, h\right)\right|=0$.
For the second problem we proceed exactly the same way except that we set $\psi_{j}(x)=$ $j^{1 / 2} \psi(j x)$ so that $\left\|g_{j}-\psi_{j}\right\|=\|g-\psi\|$. Hence

$$
\left|\left(g_{j}, h\right)\right| \leq \varepsilon(\|h\|+\|\psi\|)+\left|\left(\psi_{j}, \phi\right)\right|
$$

Now

$$
\left|\left(\psi_{j}, \phi\right)\right| \leq j^{1 / 2} \int|\psi(j x)||\phi(x)| d x \leq C j^{1 / 2} \int|\psi(j x)| d x=C j^{-1 / 2} \int|\psi(x)| d x
$$

where $C=\max _{x}|\phi(x)|$. The rest follows as before.

IV (15 points) : Let f_{j}, g_{j} be any two strongly convergent sequences in an arbitrary infinite dimensional Hilbert space \mathcal{H} and h_{j}, k_{j} any two weakly convergent sequences in \mathcal{H}. Prove or find a counterexample:
a) The sequence $\left(f_{j}, g_{j}\right)$ is always convergent.

Yes. Assume that f_{j} resp. g_{j} converge strongly to f resp. g. Then

$$
\left|\left(f_{j}, g_{j}\right)-(f, g)\right|=\left|\left(f_{j}-f, g_{j}\right)+\left(f, g_{j}-g\right)\right| \leq\left\|f-f_{j}\right\|\|g\|+\left\|g-g_{j}\right\|\left\|f_{j}\right\|
$$

which converges to zero since $\left\|f_{j}\right\|$ stays bounded.
b) The sequence $\left(f_{j}, h_{j}\right)$ is always convergent.

Yes. Suppose that h_{j} converges weakly to h. Then

$$
\left|\left(f_{j}, h_{j}\right)-(f, h)\right|=\left|\left(f_{j}-f, h_{j}\right)+\left(f, h_{j}-h\right)\right| \leq\left\|f-f_{j}\right\|\left\|h_{j}\right\|+\left|\left(f, h_{j}-h\right)\right| \rightarrow 0
$$

as $n \rightarrow \infty$ since $\left\|h_{j}\right\|$ is bounded by the uniform boundedness principle.
c) The sequence $\left(h_{j}, k_{j}\right)$ is always convergent.

No. Take h_{j} to be an orthonormal sequence, $\left(h_{j}, h_{k}\right)=\delta_{j, k}$ and define $k_{j}=h_{j}$ for j even and $k_{j}=0$ for j odd. Both sequences converge weakly to zero. But $\left(h_{j}, k_{j}\right)$ is a sequence that alternates between 0 and 1 and hence does not converge.

Here (\cdot, \cdot) denotes the inner product in \mathcal{H}.

V: Extra credit: This exercise is difficult. Let X be a complete normed space (which we assume for simplicity to be real) and assume that the norm satisfies the parallelogram identity, i.e.,

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

for all $x, y \in X$. Prove that X is a Hilbert space, i.e., there exists an inner product (x, y) such that $\|x\|=\sqrt{(x, x)}$.

Solution: We define

$$
f(x, y)=\frac{1}{2}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right)
$$

First we show that $f(x, y)$ is additive in each variable. Clearly f is symmetric and hence it suffices to do this for the first variable. We have to show that

$$
\begin{gathered}
0=f(x+y, z)-f(x, z)-f(y, z) \\
=\frac{1}{2}\left(\|x+y+z\|^{2}-\|x+y\|^{2}-\|x+z\|^{2}-\|y+z\|^{2}+\|x\|^{2}+\|y\|^{2}+\|z\|^{2}\right.
\end{gathered}
$$

Now set

$$
a=\frac{x+y}{2}, b=\frac{x+z}{2}, c=\frac{y+z}{2} .
$$

Using this notation we have to show that

$$
\|a+b+c\|^{2}+\|a+b-c\|^{2}+\|a+c-b\|^{2}+\|b+c-a\|^{2}=4\|a\|^{2}+4\|b\|^{2}+4\|c\|^{2} .
$$

Now using the parallelogram identity

$$
\|a+b+c\|^{2}+\|a+b-c\|^{2}=2\|a+b\|^{2}+2\|c\|^{2}
$$

and

$$
\|a+c-b\|^{2}+\|b+c-a\|^{2}=\|c+(a-b)\|^{2}+\|c-(a-b)\|^{2}=2\|c\|^{2}+2\|a-b\|^{2},
$$

and

$$
2\|a+b\|^{2}+2\|c\|^{2}+2\|c\|^{2}+2\|a-b\|^{2}=4\|a\|^{2}+4\|b\|^{2}+4\|c\|^{2} .
$$

It remains to show that $f(x, y)$ is homogeneous in each variable. By symmetry it suffices to show this for the first variable. If p is any integer we have by induction that

$$
f(p x, y)=p f(x, y)
$$

and for $q \neq 0$ an integer

$$
q f\left(\frac{x}{q}, y\right)=f(x, y) \text { or } f\left(\frac{x}{q}, y\right)=\frac{1}{q} f(x, y)
$$

so that

$$
f(r x, y)=r f(x, y)
$$

for any rational number r. The function $x \rightarrow f(x, y)$ is continuous. To see this note that

$$
\begin{gathered}
\left|f\left(x_{1}, y\right)-f\left(x_{2}, y\right)\right|=\frac{1}{2}\left|\left\|x_{1}+y\right\|^{2}-\left\|x_{1}\right\|^{2}-\left\|x_{2}+y\right\|^{2}+\left\|x_{2}\right\|^{2}\right| \\
=\frac{1}{2}\left(\left\|x_{1}+y\right\|+\left\|x_{2}+y\right\|\right)\left(\left\|x_{1}+y\right\|-\left\|x_{2}+y\right\|\right)-\frac{1}{2}\left(\left\|x_{1}\right\|+\left\|x_{2}\right\|\right)\left(\left\|x_{2}\right\|-\left\|x_{1}\right\|\right) \\
\leq\left(\left\|x_{1}\right\|+\left\|x_{2}\right\|+\|y\|\right)\left\|x_{2}-x_{1}\right\|
\end{gathered}
$$

by the triangle inequality.
For c real, pick a sequence r_{n} of rational numbers that converge to c. Clearly

$$
c f(x, y)=\lim _{n \rightarrow \infty} r_{n} f(x, y)=\lim _{n \rightarrow \infty} f\left(r_{n} x, y\right)=f(c x, y) .
$$

Hence, $f(x, y)$ satisfies the conditions of an inner product.

