Homework II, due Tuesday February 25

I: easy (10 points) Let $\mathcal{H}_{1}, \mathcal{H}_{2}$ be two Hilbert spaces and $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a bounded linear operator.
a) Prove that there exists a unique linear operator $A^{*}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ with

$$
\langle A f, g\rangle_{2}=\left\langle f, A^{*} g\right\rangle_{1}
$$

where $\langle\cdot, \cdot\rangle_{1},\langle\cdot, \cdot\rangle_{2}$ denote the inner products in \mathcal{H}_{1} resp. \mathcal{H}_{2}.
b) Prove that $\|A\|=\left\|A^{*}\right\|$.

II: (20 points) Let T be a bounded operator on a separable Hilbert space \mathcal{H}. Assume that for some orthonormal basis $f_{1}, f_{2}, f_{3}, \ldots$

$$
\sup _{\|g\|=1, g \perp\left[f_{1}, f_{2}, \ldots, f_{n}\right]}\|T g\| \rightarrow 0
$$

as $n \rightarrow \infty$. Here $\left[f_{1}, \ldots, f_{n}\right]$ denotes the span of the vectors f_{1}, \ldots, f_{n}. Prove that T is compact.

III: (35 points) Suppose that $T: \mathcal{H} \rightarrow \mathcal{H}$ is a compact operator. Let $\lambda \neq 0$ be a complex number.
a) Show that for any $g \in \operatorname{Ran}(T-\lambda I)$ among all the solutions of the equation

$$
(T-\lambda I) f=g
$$

there exists a solution f_{0} that has least length.
b) Show that there exists a constant C independent of $g \in \operatorname{Ran}(T-\lambda I)$ so that the least length solution satisfies

$$
\left\|f_{0}\right\| \leq C\|g\|
$$

c) Use b) to show that $\operatorname{Ran}(T-\lambda I)$ is closed.

IV: (35 points) Let $A: \mathcal{H} \rightarrow \mathcal{H}$ be a linear operator and A^{*} its adjoint. Assume further that

$$
A A^{*}-A^{*} A=I
$$

Prove that A^{*} and hence A cannot be bounded operators on \mathcal{H}. Proceed in the following way:
a) Guess first a formula for $A^{n} A^{* n} f$ in terms of lower powers of A and A^{*} and then prove it. (Hint: Compute

$$
\left(\frac{d}{d x}\right)^{n}\left(x^{n} h(x)\right)
$$

where $h(x)$ is a smooth function on the real line.)
b) Use a) to show that $\left\|A^{* n} f\right\| \geq \sqrt{n!}\|f\|$ and deduce from this that A^{*} cannot be bounded.

V: (30 points) Extra credit It is not difficult to prove that the space $C_{c}^{\infty}(\mathbb{R})$ is dense in $H^{1}(\mathbb{R})$, so we assume this fact as given. Not that for $f \in H^{1}(\mathbb{R}), x_{0} \in \mathbb{R}$ it does not make sense to talk about $f\left(x_{0}\right)$ since such functions are only defined almost everywhere. $f\left(x_{0}\right)$,
however, is defined for $f \in C_{c}^{\infty}(\mathbb{R})$ and the functional $f \rightarrow f\left(x_{0}\right)$ is abviously linear which we denote by $\ell_{x_{0}}(f)$.
a) Prove that for any function $f \in C_{c}^{\infty}(\mathbb{R})$

$$
\max |f(x)|^{2} \leq\left(\int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} d x\right)^{1 / 2}\left(\int_{\mathbb{R}}|f(x)|^{2} d x\right)^{1 / 2}
$$

b) Prove that $\ell_{x_{0}}(f)$ can be uniquely extended to a bounded linear functional on $H^{1}(\mathbb{R})$, which is called the trace of the function $f \in H^{1}(\mathbb{R})$.
c) Find $g_{x_{0}} \in H^{1}(\mathbb{R})$ so that

$$
\ell_{x_{0}}(f)=\left\langle f, g_{x_{0}}\right\rangle_{H^{1}(\mathbb{R})} .
$$

(Hint: Think of the Green function.)

