
Homework II, due Tuesday February 25

I: easy (10 points) Let H1,H2 be two Hilbert spaces and A : H1 → H2 be a bounded linear
operator.

a) Prove that there exists a unique linear operator A∗ : H2 → H1 with

〈Af, g〉2 = 〈f, A∗g〉1
where 〈·, ·〉1, 〈·, ·〉2 denote the inner products in H1 resp. H2.

Simply note that the functional
f → 〈Af, g〉2

is a linear function on H1 and it is bounded sinnce A is bounded, by Schwarz’s inequality. By
the Riesz representation theorem there exists a unique element h ∈ H1 such that

〈Af, g〉2 = 〈f, h〉1
for all f ∈ H1. It is easy to see that the map g → h is linear and hence we may define h = A∗g.

b) Prove that ‖A‖ = ‖A∗‖.
This follows from

‖A‖ = sup
‖f‖1=‖g‖2=1

|〈Af, g〉2| = sup
‖f‖1=‖g‖2=1

|〈f, A∗g〉1| = ‖A∗‖ .

II: (20 points) Let T be a bounded operator on a separable Hilbert space H. Assume that
for some orthonormal basis f1, f2, f3, . . .

sup
‖g‖=1,g⊥[f1,f2,...,fn]

‖Tg‖ → 0

as n → ∞. Here [f1, . . . , fn] denotes the span of the vectors f1, . . . , fn. Prove that T is
compact.

Consider the operator

TNf =
N∑
k=1

Tfi〈f, fi〉

so that

(T − TN)f =
∞∑

k=N+1

Tfi〈f, fi〉

Thus, for f ∈ [f1, . . . , fN ]
(T − TN)f = 0 .

Let h ∈ H arbitrary. We can write h = h1 +h2 where h1 ∈ [f1, . . . , fN ] and h2 ∈ [f1, . . . , fN ]⊥.
Thus

(T − TN)h = Th2

and hence

‖(T − TN)h‖ = ‖Th2‖ ≤ sup
‖g‖=1,g⊥[f1,f2,...,fn]

‖Tg‖‖h2‖ ≤ ‖Th2‖ ≤ sup
‖g‖=1,g⊥[f1,f2,...,fn]

‖Tg‖‖h‖

Therefore, by our assumption, ‖T − TN‖ → 0 as N →∞. Since TN is compact for any finite
N , T is also compact.
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III: (35 points) Suppose that T : H → H is a compact operator. Let λ 6= 0 be a complex
number.

a) Show that for any g ∈ Ran(T − λI) among all the solutions of the equation

(T − λI)f = g

there exists a solution f0 that has least length.
Set

D = inf{‖f‖ : (T − λI)f = g}
and consider the a minimizing sequence fn with (T − λI)fn = g and ‖fn‖ → D. Since the
sequence is bounded there exists a weakly convergent subsequence, which we denote again by
fn. Let f be the weak limit. Since

Tfn − λfn = g

for all n and since T is compact we know that Tfn converges strongly and hence fn converges
strongly to f . This implies that ‖f‖ = D and since T is continuous we find that (T −λ)f = g.

b) Show that there exists a constant C independent of g ∈ Ran(T − λI) so that the least
length solution satisfies

‖f0‖ ≤ C‖g‖
Suppose there is not such a constant. Then we could find a sequence gn so that ‖gn‖ → 0

while the least length solution of (T −λ)fn = gn satisfies ‖fn‖ = 1. Once more, we can pass to
a weakly convergent subsequence and can therefore assum that fn converges weakly to some
function f . Since T is compact, Tfn converges strongly to Tf and sincegn converges strongly
to zero we find that fn converges strongly to f and hence

Tf − λf = 0 .

This implies that
(T − λI)(fn − f) = gn

and for n large enough ‖fn − f‖ < 1 which contradicts the fact that fn is the least length
solution.

c) Use b) to show that Ran(T − λI) is closed. This is immediate. Let gn be in the range
of T − λI, i.e, (T − λI)fn = gn and where we can assume that fn is the least length solution
and gn → g. Since there exists C fixed so that

‖fn − fm‖ ≤ C‖gn − gm‖
we see that fn is a Cauchy sequence. Hence fn → f and (T − λI)f = g so that g is in the
rnage of T − λI.

IV: (35 points) Let A : H → H be a linear operator and A∗ its adjoint. Assume further
that

AA∗ − A∗A = I .

Prove that A∗ and hence A cannot be bounded operators on H. Proceed in the following way:
a) Guess first a formula for AnA∗nf in terms of lower powers of A and A∗ and then prove

it. (Hint: Compute (
d

dx

)n

(xnh(x))

where h(x) is a smooth function on the real line.)
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The Leibniz rule yields
n∑

k=0

(
n
k

)
(xn)(k)h(n−k) =

n∑
k=0

n!

(n− k)!k!

n!

(n− k)!
xn−kh(n−k) .

Since d
dx
x − x d

dx
= 1, which are the same commutation relations that A and A∗ satisfies, we

find

AnA∗n =
n∑

k=0

n!

(n− k)!k!

n!

(n− k)!
A

∗n−kAn−k .

One easily checks that the formula holds for n = 1, since

AA∗ = A∗A+ I .

Assume the formula for n and compute

An+1A∗n+1 =
n∑

k=0

n!

(n− k)!k!

n!

(n− k)!
AA

∗n−kAn−kA∗ .

Now
AA∗n−k = A∗n−kA+ (n− k)A∗n−k−1 ,

and hence we get

AA∗n−kAn−kA∗ = A∗n−kAn−k+1A∗ + (n− k)A∗n−k−1An−kA∗ .

Further,
An−k+1A∗ = A∗An−k+1 + (n− k + 1)An−k

and
An−kA∗ = A∗An−k + (n− k)An−k−1 ,

so that

AA∗n−kAn−kA∗ = A∗n−k+1An−k+1 + (2(n− k) + 1)A∗n−kAn−k + (n− k)2A∗n−k−1An−k−1 .

Using this and changing indices we get

An+1A∗n+1 =
n∑

k=0

n!

(n− k)!k!

n!

(n− k)!
A∗n+1−kAn+1−k

+
n+1∑
k=1

n!

(n− k + 1)!(k − 1)!

n!

(n− k + 1)!
[2(n+ 1− k) + 1]A∗n+1−kAn+1−k

n+1∑
k=2

n!

(n− k + 2)!(k − 2)!

n!

(n− k + 2)!
(n− k + 2)2A∗n+1−kAn+1−k

For 2 ≤ k ≤ n we find

n!

(n− k)!k!

n!

(n− k)!
+

n!

(n− k + 1)!(k − 1)!

n!

(n− k + 1)!
[2(n+ 1− k) + 1]

+
n!

(n− k + 2)!(k − 2)!

n!

(n− k + 2)!
(n− k + 2)2

=
(n+ 1)!

(n+ 1− k)!k!

(n+ 1)!

(n+ 1− k)!
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For k = 1 the contributions to the coefficients are

(2n+ 1) + n2 = (n+ 1)2 =
(n+ 1)!

(n+ 1− 1)!1!

(n+ 1)!

(n+ 1− 1)!

and the term k = 0 has the coefficient 1. Hence we obtain the sum

An+1A∗n+1 =
n+1∑
k=0

(
n+ 1
k

)
(n+ 1)!

(n+ 1− k)!
A∗n+1−kAn+1−k

which was to be shown.
Hence

‖A∗nf‖2 =
n∑

k=0

n!

(n− k)!k!

n!

(n− k)!
‖An−kf‖2

b) Use a) to show that ‖A∗nf‖ ≥
√
n!‖f‖ and deduce from this that A∗ cannot be bounded.

This inequality follows by taking the term k = 0 which shows that A∗ cannot be bounded.

V: (30 points) Extra credit It is not difficult to prove that the space C∞c (R) is dense in
H1(R), so we assume this fact as given. Not that for f ∈ H1(R), x0 ∈ R it does not make
sense to talk about f(x0) since such functions are only defined almost everywhere. f(x0),
however, is defined for f ∈ C∞c (R) and the functional f → f(x0) is abviously linear which we
denote by `x0(f).

a) Prove that for any function f ∈ C∞c (R)

max |f(x)|2 ≤
(∫

R
|f ′(x)|2dx

)1/2(∫
R
|f(x)|2dx

)1/2

Start with

f(x)2 = 2

∫ x

−∞
f ′(y)f(y)dy ≤ 2

∫ x

−∞
|f(y)||f ′(y)|dy

and

f(x)2 = −2

∫ ∞
x

f ′(y)f(y)dy ≤ 2

∫ ∞
x

|f(y)||f ′(y)|dy

Adding these two inequalities yields

2f(x)2 ≤ 2

∫ ∞
−∞
|f(y)||f ′(y)|dy

Now the inequality follows from Schwarz’s inequality.
b) Prove that `x0(f) can be uniquely extended to a bounded linear functional on H1(R),

which is called the trace of the function f ∈ H1(R).
This is immediate from b): We have fro f ∈ C∞c (R)

`x0(f) = |f(x0)| ≤
√
‖f‖‖f ′‖ ≤ 1√

2

√
‖f‖2 + ‖f ′‖2 =

1√
2
‖f‖H1(R) .

Thus `x0 extends uniquely to a bounded linear functional on H1(R). Further, by the Riesz
representation theorem there exists a unique function g so that

`x0(f) = 〈f, g〉H1(R) .

c) Find gx0 ∈ H1(R) so that
`x0(f) = 〈f, gx0〉H1(R) .
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(Hint: Think of the Green function.) For f ∈ C∞c (R) we have to find g ∈ H1(R) so that

f(x0) =

∫
R
[gf + g′f ′]dx

Pick any function f ∈ C∞c (−∞, x0) and note that

0 =

∫
R
[gf + g′f ′]dx =

∫
R
[g − g′′]fdx

from which we conclude that g = g′′ on the interval (−∞, x0). Similarly we also have that
g′′ = g on (x0,∞). Now for general f ∈ C∞c (R) we find using integration by parts

f(x0) =

∫
R
[gf+g′f ′]dx = lim

ε→0
[−
∫ x0−ε

−∞
[g−g′′]fdx+g′(x0−ε)f(x0−ε)−

∫ ∞
x0+ε

[g−g′′]fdx−f(x0+ε)g
′(x0+ε)] ,

= lim
ε→0

[g′(x0 − ε)− g′(x0 + ε)]f(x0) .

Thus, we have to find a function that satisfies g′′ = g on (−∞, x0) and (x0,∞) and its
derivative has a jump at x0, i.e.,

lim
ε→0

[g′(x0 − ε)− g′(x0 + ε) = 1 .

Clearly, the function which has this property is given by

ce−|x−x0|

where c is a constant.
lim
ε→0

[g′(x0 − ε)− g′(x0 + ε) = 2c .

abd hence c = 1
2
. To summarize, we find that∫ ∞

−∞
[f(y)gx0(y) + f ′(y)g′x0

(y)]dy = f(x0)

for all f ∈ C∞c (R) where

gx0(y) =
1

2
e−|y−x0| .


