Homework II, due Tuesday February 25

I: easy (10 points) Let $\mathcal{H}_{1}, \mathcal{H}_{2}$ be two Hilbert spaces and $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a bounded linear operator.
a) Prove that there exists a unique linear operator $A^{*}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ with

$$
\langle A f, g\rangle_{2}=\left\langle f, A^{*} g\right\rangle_{1}
$$

where $\langle\cdot, \cdot\rangle_{1},\langle\cdot, \cdot\rangle_{2}$ denote the inner products in \mathcal{H}_{1} resp. \mathcal{H}_{2}.
Simply note that the functional

$$
f \rightarrow\langle A f, g\rangle_{2}
$$

is a linear function on \mathcal{H}_{1} and it is bounded sinnce A is bounded, by Schwarz's inequality. By the Riesz representation theorem there exists a unique element $h \in \mathcal{H}_{1}$ such that

$$
\langle A f, g\rangle_{2}=\langle f, h\rangle_{1}
$$

for all $f \in \mathcal{H}_{1}$. It is easy to see that the map $g \rightarrow h$ is linear and hence we may define $h=A^{*} g$.
b) Prove that $\|A\|=\left\|A^{*}\right\|$.

This follows from

$$
\|A\|=\sup _{\|f\|_{1}=\|g\|_{2}=1}\left|\langle A f, g\rangle_{2}\right|=\sup _{\|f\|_{1}=\|g\|_{2}=1}\left|\left\langle f, A^{*} g\right\rangle_{1}\right|=\left\|A^{*}\right\|
$$

II: (20 points) Let T be a bounded operator on a separable Hilbert space \mathcal{H}. Assume that for some orthonormal basis $f_{1}, f_{2}, f_{3}, \ldots$

$$
\sup _{\|g\|=1, g \perp\left[f_{1}, f_{2}, \ldots, f_{n}\right]}\|T g\| \rightarrow 0
$$

as $n \rightarrow \infty$. Here $\left[f_{1}, \ldots, f_{n}\right]$ denotes the span of the vectors f_{1}, \ldots, f_{n}. Prove that T is compact.

Consider the operator

$$
T_{N} f=\sum_{k=1}^{N} T f_{i}\left\langle f, f_{i}\right\rangle
$$

so that

$$
\left(T-T_{N}\right) f=\sum_{k=N+1}^{\infty} T f_{i}\left\langle f, f_{i}\right\rangle
$$

Thus, for $f \in\left[f_{1}, \ldots, f_{N}\right]$

$$
\left(T-T_{N}\right) f=0 .
$$

Let $h \in \mathcal{H}$ arbitrary. We can write $h=h_{1}+h_{2}$ where $h_{1} \in\left[f_{1}, \ldots, f_{N}\right]$ and $h_{2} \in\left[f_{1}, \ldots, f_{N}\right]^{\perp}$. Thus

$$
\left(T-T_{N}\right) h=T h_{2}
$$

and hence

$$
\left\|\left(T-T_{N}\right) h\right\|=\left\|T h_{2}\right\| \leq \sup _{\|g\|=1, g \perp\left[f_{1}, f_{2}, \ldots, f_{n}\right]}\|T g\|\left\|h_{2}\right\| \leq\left\|T h_{2}\right\| \leq \sup _{\|g\|=1, g \perp\left[f_{1}, f_{2}, \ldots, f_{n}\right]}\|T g\|\|h\|
$$

Therefore, by our assumption, $\left\|T-T_{N}\right\| \rightarrow 0$ as $N \rightarrow \infty$. Since T_{N} is compact for any finite N, T is also compact.

III: (35 points) Suppose that $T: \mathcal{H} \rightarrow \mathcal{H}$ is a compact operator. Let $\lambda \neq 0$ be a complex number.
a) Show that for any $g \in \operatorname{Ran}(T-\lambda I)$ among all the solutions of the equation

$$
(T-\lambda I) f=g
$$

there exists a solution f_{0} that has least length.
Set

$$
D=\inf \{\|f\|:(T-\lambda I) f=g\}
$$

and consider the a minimizing sequence f_{n} with $(T-\lambda I) f_{n}=g$ and $\left\|f_{n}\right\| \rightarrow D$. Since the sequence is bounded there exists a weakly convergent subsequence, which we denote again by f_{n}. Let f be the weak limit. Since

$$
T f_{n}-\lambda f_{n}=g
$$

for all n and since T is compact we know that $T f_{n}$ converges strongly and hence f_{n} converges strongly to f. This implies that $\|f\|=D$ and since T is continuous we find that $(T-\lambda) f=g$.
b) Show that there exists a constant C independent of $g \in \operatorname{Ran}(T-\lambda I)$ so that the least length solution satisfies

$$
\left\|f_{0}\right\| \leq C\|g\|
$$

Suppose there is not such a constant. Then we could find a sequence g_{n} so that $\left\|g_{n}\right\| \rightarrow 0$ while the least length solution of $(T-\lambda) f_{n}=g_{n}$ satisfies $\left\|f_{n}\right\|=1$. Once more, we can pass to a weakly convergent subsequence and can therefore assum that f_{n} converges weakly to some function f. Since T is compact, $T f_{n}$ converges strongly to $T f$ and since g_{n} converges strongly to zero we find that f_{n} converges strongly to f and hence

$$
T f-\lambda f=0
$$

This implies that

$$
(T-\lambda I)\left(f_{n}-f\right)=g_{n}
$$

and for n large enough $\left\|f_{n}-f\right\|<1$ which contradicts the fact that f_{n} is the least length solution.
c) Use b) to show that $\operatorname{Ran}(T-\lambda I)$ is closed. This is immediate. Let g_{n} be in the range of $T-\lambda I$, i.e, $(T-\lambda I) f_{n}=g_{n}$ and where we can assume that f_{n} is the least length solution and $g_{n} \rightarrow g$. Since there exists C fixed so that

$$
\left\|f_{n}-f_{m}\right\| \leq C\left\|g_{n}-g_{m}\right\|
$$

we see that f_{n} is a Cauchy sequence. Hence $f_{n} \rightarrow f$ and $(T-\lambda I) f=g$ so that g is in the rnage of $T-\lambda I$.

IV: (35 points) Let $A: \mathcal{H} \rightarrow \mathcal{H}$ be a linear operator and A^{*} its adjoint. Assume further that

$$
A A^{*}-A^{*} A=I
$$

Prove that A^{*} and hence A cannot be bounded operators on \mathcal{H}. Proceed in the following way:
a) Guess first a formula for $A^{n} A^{* n} f$ in terms of lower powers of A and A^{*} and then prove it. (Hint: Compute

$$
\left(\frac{d}{d x}\right)^{n}\left(x^{n} h(x)\right)
$$

where $h(x)$ is a smooth function on the real line.)

The Leibniz rule yields

$$
\sum_{k=0}^{n}\binom{n}{k}\left(x^{n}\right)^{(k)} h^{(n-k)}=\sum_{k=0}^{n} \frac{n!}{(n-k)!k!} \frac{n!}{(n-k)!} x^{n-k} h^{(n-k)}
$$

Since $\frac{d}{d x} x-x \frac{d}{d x}=1$, which are the same commutation relations that A and A^{*} satisfies, we find

$$
A^{n} A^{* n}=\sum_{k=0}^{n} \frac{n!}{(n-k)!k!} \frac{n!}{(n-k)!} A^{* n-k} A^{n-k}
$$

One easily checks that the formula holds for $n=1$, since

$$
A A^{*}=A^{*} A+I
$$

Assume the formula for n and compute

$$
A^{n+1} A^{* n+1}=\sum_{k=0}^{n} \frac{n!}{(n-k)!k!} \frac{n!}{(n-k)!} A A^{* n-k} A^{n-k} A^{*} .
$$

Now

$$
A A^{* n-k}=A^{* n-k} A+(n-k) A^{* n-k-1},
$$

and hence we get

$$
A A^{* n-k} A^{n-k} A^{*}=A^{* n-k} A^{n-k+1} A^{*}+(n-k) A^{* n-k-1} A^{n-k} A^{*} .
$$

Further,

$$
A^{n-k+1} A^{*}=A^{*} A^{n-k+1}+(n-k+1) A^{n-k}
$$

and

$$
A^{n-k} A^{*}=A^{*} A^{n-k}+(n-k) A^{n-k-1}
$$

so that

$$
A A^{* n-k} A^{n-k} A^{*}=A^{* n-k+1} A^{n-k+1}+(2(n-k)+1) A^{* n-k} A^{n-k}+(n-k)^{2} A^{* n-k-1} A^{n-k-1}
$$

Using this and changing indices we get

$$
\begin{gathered}
A^{n+1} A^{* n+1}=\sum_{k=0}^{n} \frac{n!}{(n-k)!k!} \frac{n!}{(n-k)!} A^{* n+1-k} A^{n+1-k} \\
+\sum_{k=1}^{n+1} \frac{n!}{(n-k+1)!(k-1)!} \frac{n!}{(n-k+1)!}[2(n+1-k)+1] A^{* n+1-k} A^{n+1-k} \\
\sum_{k=2}^{n+1} \frac{n!}{(n-k+2)!(k-2)!} \frac{n!}{(n-k+2)!}(n-k+2)^{2} A^{* n+1-k} A^{n+1-k}
\end{gathered}
$$

For $2 \leq k \leq n$ we find

$$
\begin{gathered}
\frac{n!}{(n-k)!k!} \frac{n!}{(n-k)!}+\frac{n!}{(n-k+1)!(k-1)!} \frac{n!}{(n-k+1)!}[2(n+1-k)+1] \\
+\frac{n!}{(n-k+2)!(k-2)!} \frac{n!}{(n-k+2)!}(n-k+2)^{2} \\
=\frac{(n+1)!}{(n+1-k)!k!} \frac{(n+1)!}{(n+1-k)!}
\end{gathered}
$$

For $k=1$ the contributions to the coefficients are

$$
(2 n+1)+n^{2}=(n+1)^{2}=\frac{(n+1)!}{(n+1-1)!1!} \frac{(n+1)!}{(n+1-1)!}
$$

and the term $k=0$ has the coefficient 1 . Hence we obtain the sum

$$
A^{n+1} A^{* n+1}=\sum_{k=0}^{n+1}\binom{n+1}{k} \frac{(n+1)!}{(n+1-k)!} A^{* n+1-k} A^{n+1-k}
$$

which was to be shown.
Hence

$$
\left\|A^{* n} f\right\|^{2}=\sum_{k=0}^{n} \frac{n!}{(n-k)!k!} \frac{n!}{(n-k)!}\left\|A^{n-k} f\right\|^{2}
$$

b) Use a) to show that $\left\|A^{* n} f\right\| \geq \sqrt{n!}\|f\|$ and deduce from this that A^{*} cannot be bounded.

This inequality follows by taking the term $k=0$ which shows that A^{*} cannot be bounded.

V: (30 points) Extra credit It is not difficult to prove that the space $C_{c}^{\infty}(\mathbb{R})$ is dense in $H^{1}(\mathbb{R})$, so we assume this fact as given. Not that for $f \in H^{1}(\mathbb{R}), x_{0} \in \mathbb{R}$ it does not make sense to talk about $f\left(x_{0}\right)$ since such functions are only defined almost everywhere. $f\left(x_{0}\right)$, however, is defined for $f \in C_{c}^{\infty}(\mathbb{R})$ and the functional $f \rightarrow f\left(x_{0}\right)$ is abviously linear which we denote by $\ell_{x_{0}}(f)$.
a) Prove that for any function $f \in C_{c}^{\infty}(\mathbb{R})$

$$
\max |f(x)|^{2} \leq\left(\int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} d x\right)^{1 / 2}\left(\int_{\mathbb{R}}|f(x)|^{2} d x\right)^{1 / 2}
$$

Start with

$$
f(x)^{2}=2 \int_{-\infty}^{x} f^{\prime}(y) f(y) d y \leq 2 \int_{-\infty}^{x}|f(y)|\left|f^{\prime}(y)\right| d y
$$

and

$$
f(x)^{2}=-2 \int_{x}^{\infty} f^{\prime}(y) f(y) d y \leq 2 \int_{x}^{\infty}|f(y)|\left|f^{\prime}(y)\right| d y
$$

Adding these two inequalities yields

$$
2 f(x)^{2} \leq 2 \int_{-\infty}^{\infty}|f(y)|\left|f^{\prime}(y)\right| d y
$$

Now the inequality follows from Schwarz's inequality.
b) Prove that $\ell_{x_{0}}(f)$ can be uniquely extended to a bounded linear functional on $H^{1}(\mathbb{R})$, which is called the trace of the function $f \in H^{1}(\mathbb{R})$.

This is immediate from b): We have fro $f \in C_{c}^{\infty}(\mathbb{R})$

$$
\ell_{x_{0}}(f)=\left|f\left(x_{0}\right)\right| \leq \sqrt{\|f\|\left\|f^{\prime}\right\|} \leq \frac{1}{\sqrt{2}} \sqrt{\|f\|^{2}+\left\|f^{\prime}\right\|^{2}}=\frac{1}{\sqrt{2}}\|f\|_{H^{1}(\mathbb{R})}
$$

Thus $\ell_{x_{0}}$ extends uniquely to a bounded linear functional on $H^{1}(\mathbb{R})$. Further, by the Riesz representation theorem there exists a unique function g so that

$$
\ell_{x_{0}}(f)=\langle f, g\rangle_{H^{1}(\mathbb{R})} .
$$

c) Find $g_{x_{0}} \in H^{1}(\mathbb{R})$ so that

$$
\ell_{x_{0}}(f)=\left\langle f, g_{x_{0}}\right\rangle_{H^{1}(\mathbb{R})} .
$$

(Hint: Think of the Green function.) For $f \in C_{c}^{\infty}(\mathbb{R})$ we have to find $g \in H^{1}(\mathbb{R})$ so that

$$
f\left(x_{0}\right)=\int_{\mathbb{R}}\left[g f+g^{\prime} f^{\prime}\right] d x
$$

Pick any function $f \in C_{c}^{\infty}\left(-\infty, x_{0}\right)$ and note that

$$
0=\int_{\mathbb{R}}\left[g f+g^{\prime} f^{\prime}\right] d x=\int_{\mathbb{R}}\left[g-g^{\prime \prime}\right] f d x
$$

from which we conclude that $g=g^{\prime \prime}$ on the interval $\left(-\infty, x_{0}\right)$. Similarly we also have that $g^{\prime \prime}=g$ on $\left(x_{0}, \infty\right)$. Now for general $f \in C_{c}^{\infty}(\mathbb{R})$ we find using integration by parts

$$
\begin{gathered}
f\left(x_{0}\right)=\int_{\mathbb{R}}\left[g f+g^{\prime} f^{\prime}\right] d x=\lim _{\varepsilon \rightarrow 0}\left[-\int_{-\infty}^{x_{0}-\varepsilon}\left[g-g^{\prime \prime}\right] f d x+g^{\prime}\left(x_{0}-\varepsilon\right) f\left(x_{0}-\varepsilon\right)-\int_{x_{0}+\varepsilon}^{\infty}\left[g-g^{\prime \prime}\right] f d x-f\left(x_{0}+\varepsilon\right) g^{\prime}\left(x_{0}+\varepsilon\right)\right] \\
=\lim _{\varepsilon \rightarrow 0}\left[g^{\prime}\left(x_{0}-\varepsilon\right)-g^{\prime}\left(x_{0}+\varepsilon\right)\right] f\left(x_{0}\right)
\end{gathered}
$$

Thus, we have to find a function that satisfies $g^{\prime \prime}=g$ on $\left(-\infty, x_{0}\right)$ and $\left(x_{0}, \infty\right)$ and its derivative has a jump at x_{0}, i.e.,

$$
\lim _{\varepsilon \rightarrow 0}\left[g^{\prime}\left(x_{0}-\varepsilon\right)-g^{\prime}\left(x_{0}+\varepsilon\right)=1\right.
$$

Clearly, the function which has this property is given by

$$
c e^{-\left|x-x_{0}\right|}
$$

where c is a constant.

$$
\lim _{\varepsilon \rightarrow 0}\left[g^{\prime}\left(x_{0}-\varepsilon\right)-g^{\prime}\left(x_{0}+\varepsilon\right)=2 c .\right.
$$

abd hence $c=\frac{1}{2}$. To summarize, we find that

$$
\int_{-\infty}^{\infty}\left[f(y) g_{x_{0}}(y)+f^{\prime}(y) g_{x_{0}}^{\prime}(y)\right] d y=f\left(x_{0}\right)
$$

for all $f \in C_{c}^{\infty}(\mathbb{R})$ where

$$
g_{x_{0}}(y)=\frac{1}{2} e^{-\left|y-x_{0}\right|} .
$$

