Homework III Solutions

I: (20 points) Let H be a Hilbert space. A bounded linear operator A : H — H is called
normal if AA* = A*A. If A is normal, show the set
{p(A, A) : p(w, z) a polynomial in two variables}

is a commutative subalgebra of L£(#) which is closed under % and hence its closure is a
commutative C* subalgebra of L(H).
The set of such operators is obviously an algebra. If

p(w, z) = ch’kwjzk
then '
PIAAT) =D ¢ AV AT
and '
which is again in the algebra. The commutativity follows from the assumption that A is
normal.

IT: (20 points) Let H be a Hilbert space. A bounded linear operator A : H — #H is called
normal if AA* = A*A. Show that if A is normal then

r(4) = [|Al

where r(A) is the spectral radius of A. (Hint: Prove first that || A%]| = ||A|]*.)
We have that
AP = sup (7, 4°Af) = | 4]
since A*A is self adjoint. Next,

|AZA|]* = sup (A"Af, A"Af) = §u§1<A2f,A2f> = || 47"

=1 /1
since A is normal. Thus, ||A?|| = ||A]|%. Since A? is also normal we find |[|A*|| = ||A||* and, by
induction, |A?"| = ||A||*". Hence
my L
1A |7 = [|A]|
and since ||A"]|/7I" converges to r(A), we have that r(A) = || A]|.

ITI: (20 points) Let A be a normal operator. Prove that for any polynomial p(\)
Ip(A)|| = sup [p(A)] -
A€o (A)

Recall that since p(A) is normal
sup |z = r(p(A4)) = [Ip(A)]|

z€a(p(A))

We know, however, from the lecture that

a(p(A4)) TP(U(A))
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and hence

sup [z] = sup [p(z)|.
z€o(p(A)) z€0(A)

IV: (20 points) a) Show that a normal operator A can be written as
A=B+:iC
where B, C' are bounded self adjoint operators which commute, i.e., BC' = CB.
Define . .
i
and note that B* = B, C* = C. This is general and has nothing to do with A being normal.
A normal implies that BC' = C'B. Obviously

B+iC=A.

b) If A is a normal operator then the spectrum
o(A) C{s+it:sea(B), teao(C)}.

This is a bit more tricky. Let p € p(B). We have to show that u+is € p(A) for any s € R.
The operator
Q:=(B—ul)*+ (C —sI)?
is self adjoint. Since B — pl has a bounded inverse we have that

(B = pI) f1I* = c|l fII*

for some positive constant ¢. Hence, 0(Q) C (¢, [|Q]|) and it follows from the spectral theorem
that () is invertible with a bounded inverse. Next consider

(B—pl —i(C—sD)Q" = Q (B — ul —i(C — sI))
and note that
(A= (u+is)[)(B - pl —i(C —s1)Q™ = Q@' = I
and
QB - pul —i(C = sI))(A— (u+is) = Q'Q =1
and hence p + is € p(A). Likewies, in a similar fashion one can see that if v € p(C') then
t+iv € p(A) for all t € R. Hence

{p+is:vepB),secR}U{t+iv:teR vepC)}CplA).

and by taking complements the result follows.

V: (20 points) (Taken from Reed-Simon) Suppose that f is a bounded measurable function,
but f ¢ L?(R). On the domain

D={¢cI’R): / F(@)é(@))dz < o0}

consider the operator

Ag(z) = (0, )Y,



where 1) is a fixed function in L?(R) and (-,-) is the usual inner product. Show that
a) A is densely defined.

b)that D(A*) is not dense and that on D(A*) the operator A* is the zero operator.
The domain D is dense, since S(R) C D. Recall that g € D(A*) if

¢ — (A0, 9)
extends to a bounded linear functional on all of L*(R). But in the example at hand

(Ad, g) = (o, [) (¥, 9) -
The functional

<¢7f>

is not bounded on L?(R) since f ¢ L*(R). More precisely, consider the sequence of functions

f(@)X(—nm) (@)
IO 1f (@) [2da

where x(_nn) () is the characteristic function of the interval (—n,n). Clearly ||¢,| =1 but

(6n. f) = / " (@) Pda

—n

which diverges as n — oco. Thus, the domain of A* consists of all functions g with (¢, g) =0
and on this domain A* is the zero operator.



