
Homework III Solutions

I: (20 points) Let H be a Hilbert space. A bounded linear operator A : H → H is called
normal if AA∗ = A∗A. If A is normal, show the set

{p(A,A∗) : p(w, z) a polynomial in two variables}
is a commutative subalgebra of L(H) which is closed under ∗ and hence its closure is a
commutative C∗ subalgebra of L(H).

The set of such operators is obviously an algebra. If

p(w, z) =
∑

cj,kw
jzk

then
p(A,A∗) =

∑
cj,kA

jA∗k

and
p(A,A∗)∗ =

∑
cj,kA

kA∗j

which is again in the algebra. The commutativity follows from the assumption that A is
normal.

II: (20 points) Let H be a Hilbert space. A bounded linear operator A : H → H is called
normal if AA∗ = A∗A. Show that if A is normal then

r(A) = ‖A‖
where r(A) is the spectral radius of A. (Hint: Prove first that ‖A2‖ = ‖A‖2.)

We have that
‖A‖2 = sup

‖f‖=1

〈f, A∗Af〉 = ‖A∗A‖

since A∗A is self adjoint. Next,

‖A∗A‖2 = sup
‖f‖=1

〈A∗Af,A∗Af〉 = sup
‖f‖=1

〈A2f, A2f〉 = ‖A2‖2

since A is normal. Thus, ‖A2‖ = ‖A‖2. Since A2 is also normal we find ‖A4‖ = ‖A‖4 and, by
induction, ‖A2m‖ = ‖A‖2m . Hence

‖A2m‖
1

2m = ‖A‖
and since ‖An‖frac1n converges to r(A), we have that r(A) = ‖A‖.

III: (20 points) Let A be a normal operator. Prove that for any polynomial p(λ)

‖p(A)‖ = sup
λ∈σ(A)

|p(λ)| .

Recall that since p(A) is normal

sup
z∈σ(p(A))

|z| =: r(p(A)) = ‖p(A)‖

We know, however, from the lecture that

σ(p(A)) = p(σ(A))
1
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and hence
sup

z∈σ(p(A))
|z| = sup

z∈σ(A)
|p(z)| .

IV: (20 points) a) Show that a normal operator A can be written as

A = B + iC

where B,C are bounded self adjoint operators which commute, i.e., BC = CB.
Define

B =
1

2
(A+ A∗) , C =

1

2i
(A− A∗)

and note that B∗ = B,C∗ = C. This is general and has nothing to do with A being normal.
A normal implies that BC = CB. Obviously

B + iC = A .

b) If A is a normal operator then the spectrum

σ(A) ⊂ {s+ it : s ∈ σ(B), t ∈ σ(C)} .
.

This is a bit more tricky. Let µ ∈ ρ(B). We have to show that µ+ is ∈ ρ(A) for any s ∈ R.
The operator

Q := (B − µI)2 + (C − sI)2

is self adjoint. Since B − µI has a bounded inverse we have that

‖(B − µI)f‖2 ≥ c‖f‖2

for some positive constant c. Hence, σ(Q) ⊂ (c, ‖Q‖) and it follows from the spectral theorem
that Q is invertible with a bounded inverse. Next consider

(B − µI − i(C − sI))Q−1 = Q−1(B − µI − i(C − sI))

and note that
(A− (µ+ is)I)(B − µI − i(C − sI))Q−1 = QQ−1 = I

and
Q−1(B − µI − i(C − sI)))(A− (µ+ is)) = Q−1Q = I

and hence µ + is ∈ ρ(A). Likewies, in a similar fashion one can see that if ν ∈ ρ(C) then
t+ iν ∈ ρ(A) for all t ∈ R. Hence

{µ+ is : ν ∈ ρ(B), s ∈ R} ∪ {t+ iν : t ∈ R, ν ∈ ρ(C)} ⊂ ρ(A) .

and by taking complements the result follows.

V: (20 points) (Taken from Reed-Simon) Suppose that f is a bounded measurable function,
but f /∈ L2(R). On the domain

D = {φ ∈ L2(R) :

∫
R
|f(x)φ(x)|dx <∞}

consider the operator
Aφ(x) = 〈φ, f〉ψ ,
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where ψ is a fixed function in L2(R) and 〈·, ·〉 is the usual inner product. Show that

a) A is densely defined.

b)that D(A∗) is not dense and that on D(A∗) the operator A∗ is the zero operator.
The domain D is dense, since S(R) ⊂ D. Recall that g ∈ D(A∗) if

φ→ 〈Aφ, g〉
extends to a bounded linear functional on all of L2(R). But in the example at hand

〈Aφ, g〉 = 〈φ, f〉〈ψ, g〉 .
The functional

〈φ, f〉
is not bounded on L2(R) since f /∈ L2(R). More precisely, consider the sequence of functions

φn(x) =
f(x)χ(−n,n)(x)√∫ n
−n |f(x)|2dx

where χ(−n,n)(x) is the characteristic function of the interval (−n, n). Clearly ‖φn| = 1 but

〈φn, f〉 =

√∫ n

−n
|f(x)|2dx

which diverges as n→∞. Thus, the domain of A∗ consists of all functions g with 〈ψ, g〉 = 0
and on this domain A∗ is the zero operator.


