Homework III Solutions

I: (20 points) Let \mathcal{H} be a Hilbert space. A bounded linear operator $A: \mathcal{H} \rightarrow \mathcal{H}$ is called normal if $A A^{*}=A^{*} A$. If A is normal, show the set

$$
\left\{p\left(A, A^{*}\right): p(w, z) \text { a polynomial in two variables }\right\}
$$

is a commutative subalgebra of $\mathcal{L}(\mathcal{H})$ which is closed under $*$ and hence its closure is a commutative C^{*} subalgebra of $\mathcal{L}(\mathcal{H})$.

The set of such operators is obviously an algebra. If

$$
p(w, z)=\sum c_{j, k} w^{j} z^{k}
$$

then

$$
p\left(A, A^{*}\right)=\sum c_{j, k} A^{j} A^{* k}
$$

and

$$
p\left(A, A^{*}\right)^{*}=\sum \overline{c_{j, k}} A^{k} A^{* j}
$$

which is again in the algebra. The commutativity follows from the assumption that A is normal.

II: (20 points) Let \mathcal{H} be a Hilbert space. A bounded linear operator $A: \mathcal{H} \rightarrow \mathcal{H}$ is called normal if $A A^{*}=A^{*} A$. Show that if A is normal then

$$
r(A)=\|A\|
$$

where $r(A)$ is the spectral radius of A. (Hint: Prove first that $\left\|A^{2}\right\|=\|A\|^{2}$.)
We have that

$$
\|A\|^{2}=\sup _{\|f\|=1}\left\langle f, A^{*} A f\right\rangle=\left\|A^{*} A\right\|
$$

since $A^{*} A$ is self adjoint. Next,

$$
\left\|A^{*} A\right\|^{2}=\sup _{\|f\|=1}\left\langle A^{*} A f, A^{*} A f\right\rangle=\sup _{\|f\|=1}\left\langle A^{2} f, A^{2} f\right\rangle=\left\|A^{2}\right\|^{2}
$$

since A is normal. Thus, $\left\|A^{2}\right\|=\|A\|^{2}$. Since A^{2} is also normal we find $\left\|A^{4}\right\|=\|A\|^{4}$ and, by induction, $\left\|A^{2^{m}}\right\|=\|A\|^{2^{m}}$. Hence

$$
\left\|A^{2^{m}}\right\|^{\frac{1}{2^{m}}}=\|A\|
$$

and since $\left\|A^{n}\right\|^{\text {frac1n }}$ converges to $r(A)$, we have that $r(A)=\|A\|$.

III: (20 points) Let A be a normal operator. Prove that for any polynomial $p(\lambda)$

$$
\|p(A)\|=\sup _{\lambda \in \sigma(A)}|p(\lambda)|
$$

Recall that since $p(A)$ is normal

$$
\sup _{z \in \sigma(p(A))}|z|=: r(p(A))=\|p(A)\|
$$

We know, however, from the lecture that

$$
\sigma(p(A))=p(\sigma(A))
$$

and hence

$$
\sup _{z \in \sigma(p(A))}|z|=\sup _{z \in \sigma(A)}|p(z)|
$$

IV: (20 points) a) Show that a normal operator A can be written as

$$
A=B+i C
$$

where B, C are bounded self adjoint operators which commute, i.e., $B C=C B$.
Define

$$
B=\frac{1}{2}\left(A+A^{*}\right), C=\frac{1}{2 i}\left(A-A^{*}\right)
$$

and note that $B^{*}=B, C^{*}=C$. This is general and has nothing to do with A being normal. A normal implies that $B C=C B$. Obviously

$$
B+i C=A
$$

b) If A is a normal operator then the spectrum

$$
\sigma(A) \subset\{s+i t: s \in \sigma(B), t \in \sigma(C)\}
$$

This is a bit more tricky. Let $\mu \in \rho(B)$. We have to show that $\mu+i s \in \rho(A)$ for any $s \in \mathbb{R}$. The operator

$$
Q:=(B-\mu I)^{2}+(C-s I)^{2}
$$

is self adjoint. Since $B-\mu I$ has a bounded inverse we have that

$$
\|(B-\mu I) f\|^{2} \geq c\|f\|^{2}
$$

for some positive constant c. Hence, $\sigma(Q) \subset(c,\|Q\|)$ and it follows from the spectral theorem that Q is invertible with a bounded inverse. Next consider

$$
(B-\mu I-i(C-s I)) Q^{-1}=Q^{-1}(B-\mu I-i(C-s I))
$$

and note that

$$
(A-(\mu+i s) I)(B-\mu I-i(C-s I)) Q^{-1}=Q Q^{-1}=I
$$

and

$$
\left.Q^{-1}(B-\mu I-i(C-s I))\right)(A-(\mu+i s))=Q^{-1} Q=I
$$

and hence $\mu+i s \in \rho(A)$. Likewies, in a similar fashion one can see that if $\nu \in \rho(C)$ then $t+i \nu \in \rho(A)$ for all $t \in \mathbb{R}$. Hence

$$
\{\mu+i s: \nu \in \rho(B), s \in \mathbb{R}\} \cup\{t+i \nu: t \in \mathbb{R}, \nu \in \rho(C)\} \subset \rho(A)
$$

and by taking complements the result follows.

V: (20 points) (Taken from Reed-Simon) Suppose that f is a bounded measurable function, but $f \notin L^{2}(\mathbb{R})$. On the domain

$$
D=\left\{\phi \in L^{2}(\mathbb{R}): \int_{\mathbb{R}}|f(x) \phi(x)| d x<\infty\right\}
$$

consider the operator

$$
A \phi(x)=\langle\phi, f\rangle \psi,
$$

where ψ is a fixed function in $L^{2}(\mathbb{R})$ and $\langle\cdot, \cdot\rangle$ is the usual inner product. Show that a) A is densely defined.
b)that $D\left(A^{*}\right)$ is not dense and that on $D\left(A^{*}\right)$ the operator A^{*} is the zero operator.

The domain D is dense, since $\mathcal{S}(\mathbb{R}) \subset D$. Recall that $g \in D\left(A^{*}\right)$ if

$$
\phi \rightarrow\langle A \phi, g\rangle
$$

extends to a bounded linear functional on all of $L^{2}(\mathbb{R})$. But in the example at hand

$$
\langle A \phi, g\rangle=\langle\phi, f\rangle\langle\psi, g\rangle .
$$

The functional

$$
\langle\phi, f\rangle
$$

is not bounded on $L^{2}(\mathbb{R})$ since $f \notin L^{2}(\mathbb{R})$. More precisely, consider the sequence of functions

$$
\phi_{n}(x)=\frac{f(x) \chi_{(-n, n)}(x)}{\sqrt{\int_{-n}^{n}|f(x)|^{2} d x}}
$$

where $\chi_{(-n, n)}(x)$ is the characteristic function of the interval $(-n, n)$. Clearly $\| \phi_{n} \mid=1$ but

$$
\left\langle\phi_{n}, f\right\rangle=\sqrt{\int_{-n}^{n}|f(x)|^{2} d x}
$$

which diverges as $n \rightarrow \infty$. Thus, the domain of A^{*} consists of all functions g with $\langle\psi, g\rangle=0$ and on this domain A^{*} is the zero operator.

