1. Basic theorem on self adjointness

The following theorem is basic to the theory of self adjoint operators. It clarifies the role played by the adjoint of a symmetric operator.

Theorem 1.1. Let A be a symmetric operator on a Hilbert space \mathcal{H}, i.e., A is densely defined and for all $f, g \in D(A)$

$$
\langle A f, g\rangle=\langle f, A g\rangle .
$$

Then the following three statements are equivalent, i.e., each of them implies the other two.
a) A is self adjoint,
b) A is closed and $\operatorname{Ker}\left(A^{*} \pm i I\right)=\{0\}$,
c) $\operatorname{Ran}(A \pm i I)=\mathcal{H}$.

Proof. We assume that $A=A^{*}$ and prove b). Since A^{*} is closed so is A. Since a self adjoint operator has only realy eigenvalues, $\operatorname{Ker}\left(A^{*} \pm i I\right)=\{0\}$. Next we assume b) and prove c). The range of $(A+i I)$ is dense, for if $f \perp \operatorname{Ran}(A+i I)$ then

$$
\langle(A+i I) g, f\rangle=0
$$

for all $g \in D(A)$ and hence

$$
\langle A g, f\rangle=-i\langle g, f\rangle .
$$

This implies that $f \in D\left(A^{*}\right)$ and therefore

$$
0=\left\langle g,\left(A^{*}-i I\right) f\right\rangle
$$

for all $g \in D(A)$. Since $D(A)$ is dense, it follows that $f \in \operatorname{Ker}\left(A^{*}-i I\right)$ and hence $f=0$. The argument is the same for $\operatorname{Ran}(A-i I)$. Next we show that $\operatorname{Ran}(A \pm i I)$ is closed. For any $f \in D(A)$ we have

$$
\|(A+i I) f\|^{2}=\|A f\|^{2}+\|f\|^{2}
$$

since A is symmetric. Thus,

$$
\begin{equation*}
\|(A+i I) f\|^{2} \geq\|f\|^{2} \tag{1}
\end{equation*}
$$

If $g_{n} \in \operatorname{Ran}(A+i I)$ is a sequence that converges to g in \mathcal{H} then $g_{n}=(A+i I) f_{n}$ for some $f_{n} \in D(A)$. The inequality (1) now implies that f_{n} is a Cauchy sequence and hence converges to some element f. Since A is closed we must have that $f \in D(A)$ and $(A+i I) f=g$ and hence $g \in \operatorname{Ran}(A+i I)$. Thus we conclude that $\operatorname{Ran}(A+i I)=\mathcal{H}$. The proof for $\operatorname{Ran}(A-i I)=\mathcal{H}$ is the same. Next, we prove that c) implies a). Since A is symmetric, $A \subset A^{*}$. It remains to show that $D\left(A^{*}\right) \subset D(A)$. Let $g \in D\left(A^{*}\right)$. Since $\operatorname{Ran}(A+i I)=\mathcal{H}$ there exists $h \in D(A)$ with

$$
\left(A^{*}+i I\right) g=(A+i I) h
$$

or

$$
A^{*}(g-h)=-i(g-h)
$$

since $h \in D\left(A^{*}\right)$. Thus, $g-h \in \operatorname{Ker}\left(A^{*}+i I\right)$. Since $\operatorname{Ran}(A-i I)=\mathcal{H}$, $\operatorname{Ker}\left(A^{*}+i I\right)=\{0\}$ and hence $g=h$. Just note that for $f \in \operatorname{Ker}\left(A^{*}+i I\right)$ we have for all $g \in D(A)$

$$
0=\left\langle g,\left(A^{*}+i I\right) f\right\rangle=\langle(A-i I) g, f\rangle
$$

which implies that $f=0$ since $\operatorname{Ran}(A-i I)=\mathcal{H}$.

At first sight it is hard to imagine that the adjoint of a symmetric operator can have an imaginary eigenvalue. Here is an example due to von Neumann. Consider the operator

$$
A=\frac{1}{i} \frac{d}{d x} x^{3}+x^{3} \frac{1}{i} \frac{d}{d x}
$$

on the domain $D(A)=C_{c}^{\infty}(\mathbb{R})$. To be precise for $f \in D(A)$

$$
A f(x)=\frac{1}{i} \frac{d}{d x}\left(x^{3} f\right)(x)+\frac{1}{i} x^{3} f^{\prime}(x)
$$

The operator A is symmetric. This is a simple exercise. Consider now the equation

$$
\frac{1}{i} \frac{d}{d x}\left(x^{3} f\right)+x^{3} \frac{1}{i} \frac{d f}{d x}=i f
$$

Note that f in this equation is not in $D(A)$. So the computation is a formal one. This equation is the same as

$$
3 x^{2} f(x)+2 x^{3} f^{\prime}(x)=-f(x)
$$

a first order linear equation which can be solved explicitly.

$$
f^{\prime}(x)=-\left(\frac{3}{2 x}+\frac{1}{2 x^{3}}\right) f(x)
$$

or

$$
f(x)=\text { const. }|x|^{-3 / 2} e^{-\frac{1}{4 x^{2}}}
$$

If we set $f(0)=0$ for $x=0$, the function is everywhere defined and differentiable, in fact infinitely often differentiable. The function f is in $L^{2}(\mathbb{R})$ and hence $f \in D\left(A^{*}\right)$. So we have found $f \neq 0, f \in L^{2}(\mathbb{R})$ such that

$$
A^{*} f=i f
$$

Reacall that

$$
\langle A g, g\rangle=\langle g, A g\rangle
$$

for all $g \in D(A)$. To understand this a bit better consider

$$
\int_{-R}^{R}\left[\frac{1}{i} \frac{d}{d x}\left(x^{3} f\right)+x^{3} \frac{1}{i} \frac{d f}{d x}\right] \bar{f} d x
$$

which, using integration by parts, equals

$$
\left.2 \frac{1}{i} x^{3}|f(x)|^{2}\right|_{-R} ^{R}+\int_{-R}^{R} \overline{f\left[\frac{1}{i} \frac{d}{d x}\left(x^{3} f\right)+x^{3} \frac{1}{i} \frac{d f}{d x}\right]} d x
$$

Here R is positive. For our function f we see that

$$
\left.2 \frac{1}{i} x^{3}|f(x)|^{2}\right|_{-R} ^{R}=\text { const. }{ }^{2} 4 \frac{1}{i} e^{-\frac{1}{2 R^{2}}}
$$

which does not converge to zero as $R \rightarrow \infty$.

