1. BASIC THEOREM ON SELF ADJOINTNESS

The following theorem is basic to the theory of self adjoint operators. It clarifies the role
played by the adjoint of a symmetric operator.

Theorem 1.1. Let A be a symmetric operator on a Hilbert space H, i.e., A is densely defined
and for all f,g € D(A)

(Af,9) = (f, Ag) -
Then the following three statements are equivalent, i.e., each of them implies the other two.
a) A is self adjoint,
b) A is closed and Ker(A* +il) = {0},
¢) Ran(A +il) = H.
Proof. We assume that A = A* and prove b). Since A* is closed so is A. Since a self adjoint

operator has only realy eigenvalues, Ker(A* +i/) = {0}. Next we assume b) and prove c).
The range of (A + /) is dense, for if f L Ran(A + iI) then

(A+il)g, f) =0
for all g € D(A) and hence

(Ag, f) = —ilg, [) -
This implies that f € D(A*) and therefore

0= (g, (A" —il)[)

for all g € D(A). Since D(A) is dense, it follows that f € Ker(A* —il) and hence f = 0. The
argument is the same for Ran(A — il). Next we show that Ran(A + iI) is closed. For any
f € D(A) we have

1A+ fI* = I AFIP + 111

since A is symmetric. Thus,

A+ D) fII* = (£ - (1)
If g, € Ran(A +il) is a sequence that converges to g in H then g, = (A + iI)f, for some
fn € D(A). The inequality (1) now implies that f,, is a Cauchy sequence and hence converges
to some element f. Since A is closed we must have that f € D(A) and (A+il)f = g and hence
g € Ran(A + iI). Thus we conclude that Ran(A +il) = H. The proof for Ran(A —il) = H
is the same. Next, we prove that ¢) implies a). Since A is symmetric, A C A*. It remains to
show that D(A*) C D(A). Let g € D(A*). Since Ran(A + il) = H there exists h € D(A)
with

(A*+il)g = (A+il)h
or

A™(g—h) = —i(g —h)
since h € D(A*). Thus, g — h € Ker(A* + iI). Since Ran(A —iI) = H, Ker(A* +il) = {0}
and hence g = h. Just note that for f € Ker(A* +4I) we have for all g € D(A)

which implies that f = 0 since Ran(A —il) = H . O
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At first sight it is hard to imagine that the adjoint of a symmetric operator can have an
imaginary eigenvalue. Here is an example due to von Neumann. Consider the operator

on the domain D(A) = C°(R). To be precise for f € D(A)

Af) = T ) ) + a7 ()

The operator A is symmetric. This is a simple exercise. Consider now the equation

1d, 4 Jldf

—— +a-— =] .

1 dx< /) v dx /
Note that f in this equation is not in D(A). So the computation is a formal one. This equation
is the same as

32° f(2) + 22° f'(x) = — f(2)

a first order linear equation which can be solved explicitly.

@) = —(2 2 p@)

2 ' 243
or

flz) = Const.].21:\_3/2674%2 :
If we set f(0) = 0 for = 0, the function is everywhere defined and differentiable, in fact
infinitely often differentiable. The function f is in L?(R) and hence f € D(A*). So we have
found f # 0, f € L*(R) such that

A f=if .
Reacall that
(Ag,9) = (9, Ag)
for all g € D(A). To understand this a bit better consider
Brid, J1df ] -
-— —-—| fd
/R lzdx(x f)+e zdz}f v
which, using integration by parts, equals
R R T1d 1df
2 (3 32 gy
—R+/_Rf{ida:(x f)+a idx] v

Here R is positive. For our function f we see that

2% ()

1 R 1
2_.-733|f(33)!2’ — const.24-¢ T2
(4 —R 7

which does not converge to zero as R — oo.



