
1. Bounded operators

Let H1,H2 be two Hilbert spaces with inner product 〈·, ·〉1, 〈·, ·〉2. A linear operator A :
H1 → H2 is bounded if

‖A‖ := sup
06=f∈H1

‖Af‖2
‖f‖1

<∞ .

We denote by L(H1, 〈2) the space of all linear bounded operators mapping H1 into H2. It
is easy to see that L(H1,H2) together with the norm ‖A‖ is a normed linear space.

Theorem 1.1. The space L(H1,H2) is a Banach space, i.e., a linear normed complet space.

Proof. Let An be a Cauchy Sequence, i.e., for every ε > 0 there exists N so that

‖An − Am‖ < ε

whenever n,m > N . It follows that for any f ∈ H1 the sequence Anf is a Cauchy sequence.
Since H2 is complete there exists h ∈ H2 so that limn→∞ ‖Anf − h‖ = 0. Since the limit is
always unique, this defines an operator A by setting Af := h. It is easy to see that A is linear.
Since |‖An‖ − ‖Am‖| ≤ ‖An −Am‖ it follows that ‖An‖ is a Cauchy sequence and hence it is
bounded and convergent. Since

‖Af‖ = lim
n→∞

‖Anf‖ ≤ lim
n→∞

‖An‖‖f‖

it follows that A is a bounded operator. Now,

lim
n→∞

‖A− An‖ = lim
n→∞

sup
‖f‖=1

‖(A− An)f‖ = lim
n→∞

sup
‖f‖=1

lim
m→∞

‖(Am − An)f‖

≤ lim
n→∞

sup
‖f‖=1

lim
m→∞

‖(Am − An)‖‖f‖ = lim
n→∞

lim
m→∞

‖(Am − An)‖ = 0 .

�

Definition 1.2. A linear operator A : D(A)→ H is invertible if it is onto and ono-to-one.

Theorem 1.3 (Neumann Series). Let T : H → H be bounded and assume that ‖T‖ < 1.
Then (I − T ) is invertible and its inverse is given by the norm convergent Neumann series

(I − T )−1 =
∞∑
n=0

T n .

Proof. The series
∑∞

n=0 T
n is norm convergent. For this consider

TN =
N∑
n=0

T n

and note that for N > M

‖TN − TM‖ = ‖
N∑

n=M+1

T n‖ ≤
N∑

n=M+1

‖T‖n ≤ ‖T‖
M+1

1− ‖T‖

which tends to zero as M →∞, since L(H,H) is complete. Now

(I − T )TN = I − TN+1

which converges in norm to I. Likewise, TN(I − T ) = I − TN+1 also converges to I. Hence
(I − T )−1 is the inverse of (I − T ). �
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An operator A : H1 → H2 is compact if every bounded sequence in H1 is mapped into a
sequence in H2 that has a convergent subsequence.

Compact operators are bounded for assume that A is not bounded. Then there exists a
sequence fn ∈ H1 such that ‖fn‖ = 1 and ‖Afn‖ ≥ n all n = 1, 2, . . . . This, contradicts
thefact that Afn has a convergent subsequence.

Compact operators have a number of interesting properties and the following theorem is
useful for showing that certain operators are compact.

Theorem 1.4. Let An : H1 → H2 be a sequence of compact operators and assume that there
exists A that

‖A− An‖ → 0

as n→∞. Then A is compact.

Proof. Let fi be a bounded sequence. There exists a subsequence fm1(i) so that A1fm1(i)

is convergent. There exists a subsequence m2(i) of m1(i) such that A2fm2(i) is convergent.
Continuing this way we obtain a subsequence fmk(i) of fmk−1(i) so that Akfmk(i) converges.
Passing to the diagonal fmk(k) we have a sequence so that Anfmk(k) converges for all n. Since
fn is bounded there exists C so that ‖fn‖ ≤ C. Now pick ε > 0 arbitrary. Fix n so that
‖A−An‖ < ε/(3C). Next pick N so that ‖Anfmk(k) −Anfml(l)‖ < ε/3 for all k, l > N . Then

‖Afmk(k) − Afml(l)‖ ≤ ‖(A− An)fmk(k)‖+ ‖Anfmk(k) − Anfml(l)‖+ ‖(An − A)fml(l)‖

≤ ‖(A− An)‖‖fmk(k)‖+ ‖Anfmk(k) − Anfml(l)‖+ ‖(An − A)‖‖fml(l)‖ < ε

This means that Afmk(k) is a Cauchy sequence and hence A is compact. �

2. Weak sequences on existence of eigenvalues for compact operators

Below is a short summary about weakly convergent sequences and its uses. Recall that a
sequence fn ∈ H converges weakly to f ∈ H if

lim
n→∞

(h, fn) = (h, f)

for all elements h ∈ H. As an example consider on orthonormal sequence en which converges
weakly to 0. Clearly every strongly convergent sequence is weakly convergent. What the
example just mentioned suggests is that there are “many” more sequences that converge
weakly than there are that converge strongly.

Among the memorable facts are that any weakly convergent sequence is bounded, i.e.,
there exists a constant C such that ‖fn‖ ≤ C for all n = 1, 2, 3, . . . . The point about weak
concergence is, however, the following theorem.

Theorem 2.1. Weak sequential compactness Let H be a Hilbert space. Then every
bounded sequence fn has a weakly convergent subsequence.

Proof. A short sketch of the proof: let fn be a abounded sequence. Then all the possible
finite linear combination span a linear manifold M . The closure, i.e., the intersection of all
subspaces of H that contain M is the closure of M. We denote this space by G. It is a
subspace of H, it has a countable dense set of vectors (Why?) and hence forms a separable
Hilbert space. We establish now the existence of a convergent subsequence in this Hilbert
space. Denote by N ⊂ G a countable dense set of vectors. Pick h1 ∈ N . Since the sequence is
fn is bounded so is (h1, fn) and hence there exists a convergent subsequence (h, fn1(k)). Now
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pick h2 ∈ N and a new subsequence n2(k) of n1(k) such that (h2, fn2(k)) converges. Continuing
this way we have for any j = 1, 2, 3, . . .

lim
k→∞

(hj, fnj(k)) = cj

and nj(k) is a subsequence of nj−1(k). Now we consider the sequence

fnk(k)

and note that

lim
k→∞

(hj, fnk(k)) = cj .

Sine fnk(k) is bounded we have that

lim
k→∞

(h, fnk(k))

converges for all h ∈ G to some limit c(h). If u ∈ H we can write uniquely u = h + v where
h ∈ G and v ∈ G⊥. Since (v, fn) = 0 for all n = 1, 2, 3, . . . we find that

lim
k→infty

(u, fnk(k)) = lim
k→∞

(h, fnk(k)) = c(u) .

It is easy to see that u → c(u) is linear and that |c(u)| ≤ C‖u‖. Hence, by the Riesz
representation theorem there exists f ∈ H such that c(u) = (u, f) for all u ∈ H. Hence, fnk(k)
converges weakly to f .

�

Let us turn now to compact operators. Recall A : H1 → H2 is compact if it maps any
bounded sequence into a sequence that has a strongly convergent subsequence. Alternatively,
thanks to Theorem 2.1, as we shall show, A : H → H is compact if and only if it maps weakly
convergent sequences into strongly convergent.

Theorem 2.2. An operator A : H1 → H2 is compact if and only if it maps weakly convergent
sequences into strongly convergent sequences.

Proof. Assume that A is compact. If fn is a sequence converging weakly to f , it is bounded
by the uniform boundedness prinicple. Assume that Afn does not converge strongly to Af .
There exists ε > 0 and a subsequence n(k) so that

‖Afn(k) − Af‖ > ε .

Since A is compact there exists a further subsequence n1(k) so that Afn1(k) converges strongly
to some element h. For any g ∈ H2 we have

lim
k→∞
〈Afn1(k), g〉2 = lim

k→∞
〈fn1(k), A

∗g〉1 = 〈f, A∗g〉1 = 〈Af, g〉2

since fn converges weakly to f . But

〈h, g〉2 = lim
k→∞
〈Afn1(k), g〉2

and hence 〈h, g〉2 = 〈Af, g〉2 for every g ∈ H2. Hence Af = h which is a contradiction.
Suppose that A maps weakly convergent sequences into strongly convergent sequences. Let

fn be any bounded sequence. By the weak sequential compactness we can pick a weakly
convergetn subsequence again denoted by fn. Since Afn converges strongly A is compact. �
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3. Sesquilinear forms

Sesquilinear forms are a useful tool for studying linear operators. In what follows we are
looking at a Hilbert space H with inner product denoted by 〈·, ·〉.

Definition 3.1 (Sesquilinear form). (The word “sesqui” means “one and one half”) A sesquilin-
ear form q(·, ·) : H ×H → C is linear in the first argument and complex conjugate linear in
the second argument.

If T : H → H is a bounded linear operator, then

qT (f, g) = 〈Tf, g〉

is a sesquilinear form.
A sesquilinear form is bounded if

sup
‖f‖=‖g‖=1

|q(f, g)| ≤ C

where C is some constant. The left side of the above inequality is denoted by‖q‖. The
sesquilinear form qT is bounded. Indeed

|qT (f, g)| ≤ ‖Tf‖‖g‖

and recalling that ‖Tf‖ ≤ ‖T‖‖f‖ we have that

‖qT‖ ≤ ‖T‖ .

On the other hand

‖Tf‖2 = qT (f, Tf) ≤ ‖qT‖‖f‖‖Tf‖
and hence

‖T‖ = ‖qT‖
.

A particularly interesting example of sesquilinear forms is furnished by self adjoint operators.
If T ∗ = T then

qT (f, g) = qT (g, f)

and in particular

|qT (f, g)| = |qT (g, f)| .

Theorem 3.2. Let q be a bounded sesquilinear form with the additional property that

|q(f, g)| = |q(g, f)| .

Then

‖q‖ = sup
‖f‖=1

|q(f, f)| .

An immediate consequence of this inocuous statement is that for any bounded self adjoint
operator T

‖T‖ = sup
‖f‖=1

|〈Tf, f〉| .
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Proof of Theorem 3.2. Denote
C = sup

‖f‖=1

|q(f, f)| .

It is obvious that C ≤ ‖q‖. Pick any f, g ∈ H and note that

q(f, g) + q(g, f) =
1

2
[q(f + g, f + g)− q(f − g, f − g)]

so that

|q(f, g) + q(g, f)| ≤ C

2
[‖f + g‖2 + ‖f − g‖2] = C[‖f‖2 + ‖g‖2] .

We may assume that q(f, g) 6= 0 and hence we may define

eiθ =
q(f, g)

|q(f, g)|
, eiψ =

q(g, f)

|q(g, f)|
Now

2|q(f, g)| = e−iθeiθ|q(f, g)|+ e−iψeiψ|q(g, f)|
= e−iθq(f, g) + e−iψq(g, f)

= e−i
θ+ψ
2 )

[
q(e−

iθ
2 f, e−

iψ
2 g) + q(e−

iψ
2 g, e−

iθ
2 f)

]
≤ C

[
‖e−

iθ
2 f‖2 + ‖e

−iψ
2 g‖2

]
= C[‖f‖2 + ‖g‖2]

Hence
sup

‖f‖=‖g‖=1

|q(f, g)| ≤ C .

This proves the theorem.
�

There is a one to one correspondence between linear operators and sesquilinear forms.

Theorem 3.3. Let q be a bounded sesquilinear form. There exists a unique linear bounded
operator A : H → H so that

q(f, g) = qA(f, g) := 〈Af, g〉 .

Proof. The functional g → q(f, g) is a bounded linear functional on H. By Riesz’ theorem
there exists an element hf uniquely determined by f so that

q(f, g) = 〈g, hf〉 .
Hence we can associate for every f a unique hf . It is easy to see that this map is linear and
hence we may define a linear operator A : H → H by

Af = hf .

Hence
q(f, g) = 〈g, Af〉 = 〈Af, g〉 .

�

Recall that f ∈ H is an eigenvector of the linear operator A if there exists a number λ ∈ C
such that

Af = λf .

Theorem 3.4. Compact self-adjoint operators have eigenvalues let A : H → H be a compact,
self-adjoint operator. Then either ‖A‖ or −‖A‖ is an eigenvalue of A.
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Proof. Here we recall that the sesquilinear form

ω(f, g) := (Af, g)

satisfies
|ω(f, g)| = |ω(g, f)| ,

and hence
sup
‖f‖=1

|w(f, f)| = sup
‖f‖=1=‖g‖

|ω(f, g)|

and hence
sup
‖f‖=1

|(Af, f)| = ‖A‖ .

We can always assume that
sup
‖f‖=1

(Af, f) = ‖A‖

because otherwise we can replace A by −A. Our goal is to show that

sup
‖f‖=1

(Af, f)

is attained, i.e., there exists g ∈ H with g 6= 0 such that

Ag = ‖A‖g .
By the definition of the sup there exists a maximizing sequence fn, that is, ‖fn‖ = 1, n =
1, 2, 3, . . . and

lim
n→∞

(Afn, fn) = ‖A‖ .

Since fn is bounded there exists a weakly convergent subsequence which we again denote by
fn whose weak limit we call g. Now, you know from the exercises that

1 = lim
n→∞

‖fn‖ ≥ ‖g‖ .

Since A is compact Afn converges strongly to Ag. It is again an exercise to see that

lim
n→∞

(Afn, fn) = (Ag, g) .

In particular g 6= 0 since
(Ag, g) = ‖A‖ .

Next we show that ‖g‖ = 1. Since 0 < ‖g‖,

‖A‖ ≥ (A
g

‖g‖
,
g

‖g‖
) =

(Ag, g)

‖g‖2
=
‖A‖
‖g‖2

and hence ‖g‖ ≥ 1 and therefore ‖g‖ = 1. Now we show that

Ag = ‖A‖g .
Pick any v ∈ H and consider the vector

ft =
g + tv

‖g + tv‖
.

The number t ∈ C. Now

‖A‖ ≥ (Aft, ft) =
‖A‖+ t(Av, g) + t(Ag, v) + |t|2(Av, v)

1 + t(v, g) + t(g, v) + |t|2(v, v)
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The right side defines a real valued function F (t). Since F (0) = ‖A‖, f has a maximum at
t = 0. A short computation shows that for t real

0 =
d

dt
F (0) = (Av, g) + (Ag, v)− ‖A‖[(v, g) + (g, v)]

and setting t = is we find that

0 =
d

ds
F (is)|s=0 = i[−(Av, g) + (Ag, v)]− ‖A‖i[−(v, g) + (g, v)] .

Hence we have that

(Ag, v) = ‖A‖(g, v)

for all v ∈ H. Thus, Ag = ‖A‖g. �

4. The spectral theorem for compact operators

We can now use Theorem 3.4 to prove the following theorem.

Theorem 4.1. The Spectral theorem Let H be a Hilbert space and A : H → H a linear
compact self-adjoint operator. Then there exists an orthonormal system ϕj, j = 1, 2, . . . and
real numbers λj, j = 1, 2, . . . with limj→∞ λj = 0 such that for all f ∈ H

Af =
∞∑
j=1

λjϕj(ϕj, f) .

If H is separable, the system ϕj, j = 1, 2, . . . is a complete orthonormal system.

Proof. By Theorem 3.4 there exists ϕ1, normalized such that

Aϕ1 = ±‖A‖ϕ1 .

Note that the minus sign applies if −‖A‖ is the the eigenvalue with largest magnitude. Hence
we set λ1 = ±‖A‖. The subspace M1 = {f ∈ H : (ϕ1, f) = 0} is a closed subspace of H.
Moreover, for f ∈M1,

(Af, ϕ1) = (f, Aϕ1) = λ1(f, ϕ1) = 0

and hence A1 the restriction of A to the subspace M1 is a compact self-adjoint operator
A1 : M1 →M1. Applying Theorem 3.4 again we obtain a normalized vector ϕ2 with

A1ϕ2 = ±‖A1‖ϕ2 .

If ‖A1‖ = 0 then A1 is the zero operator and we are finished. If not we set λ2 = ±‖A1‖. Now
define the subspace M2 to be all those vectors in M1 that are perpendicular to the vector
ϕ2. The restriction of A1 to M2 defines a compact self-adjoint operator A2. Either it is
the zero operator and we are done, or it is not. If not we find a normalized vector ϕ3 with
A2ϕ3 = ±‖A2‖ϕ3. Continuing this way we find that either the procedure terminates or there
is an infinite sequence pair ϕj, λj with

Aϕj = λjϕj , j = 1, 2, 3, . . . .

The sequence ϕj is an orthonormal sequence and hence converges weakly to zero. Since A
is compact Aϕj converges strongly to zero and hence limj=1 λj = 0. The vectors ϕj span a
subspace R of H. If f ⊥ R then Af must be the zero vector, otherwise we could repeat our



8

procedure, contradicting the fact that limj=1 λj = 0. Hence R is an invariant subspace of A
and A restricted to R⊥ is the zero operator. Thus for f ∈ H,

Af =
∞∑
j=1

λjϕj(ϕj, f) .

Incidentally, this argument shows that the range of a self-adjoint compact operator is always
separable. This is generally true for compact operators and not just self-adjoint ones. �


