
1. Unbounded operators

In many applications, the linear operators one encounters are not bounded. The most
elementary example is multiplication by x on the Hilbert space L2(R, dx). Clearly∫

R
|xf(x)|2dx

cannot be finite for all functions f ∈ L2(R, dx), just take the function

1√
1 + x2

.

In fact, the situation is somewhat worse because of the theorem of Hellinger and Toeplitz.

Theorem 1.1. Let A be a linear operator defined everywhere on a Hilbert space H, i.e.,
A : H → H, and assume that for all f, g ∈ H

〈Af, g〉 = 〈f, Ag〉 ,

then A is a boounded operator.

The proof of this theorem is a direct application of the uniform boundedness principle and
we shall not repeat it here. Hence, we cannot talk about unbounded everywhere defined
operators in general and have to restrict the domain of definition. We have a linear operator

A : D(A)→ H

where D(A) is a linear manifold, the domain of the operator A. An operator B is an
extension of A if D(A) ⊂ D(B) and Af = Bf for all f ∈ D(A). We write A ⊂ B.

Note that the domain is part of the definition of the operator. Consider, e.g., the linear
operator T1 : C1

c (R) → L2(R) given by T1f(x) = f ′(x). The operator T2 : C∞c (R) → H is
also given by T2f(x) = f ′(x). We treat these two operators as different operators. Clearly,
T2 ⊂ T1. In general linear operators can be wild unless we impose some continuity.

Definition 1.2. Closed operators. A linear operator A : D(A) → H is closed if for any
sequence of vectors fn ∈ D(A) such that, as n → ∞, fn → f and Afn → g, it follows that
f ∈ D(A) and Af = g.

Bounded linear operators are obviously closed, in fact the convergence fn → f entails the
convergence of Afn → Af .

Another way of saying that an operator is closed is the following

Lemma 1.3. A linear operator A : D(A) → H is closed if and only if the domain D(A)

endowed with the norm ‖f‖A :=
√
‖f‖2 + ‖Af‖2 is a Banach space, i.e., a linear, normed,

complete space.

Proof. The argument is quite elementary. Assume that A is closed. Let fn be a sequence in
D(A) such that fn is a Cauchy sequence in the norm ‖f‖A. Hence fn → f and Afn → g.
Since A is closed, f ∈ D(A) and g = Af and hence ‖fn − f‖A → 0. Conversely, if D(A) is
a Banach space in the norm ‖ · ‖A, and fn ∈ D(A) converges to f and Afn converges to g,
it follows that fn is a Cauchy sequence in D(A) with the norm ‖ · ‖A and hence converges to
some f in this norm. Hence f ∈ D(A) and g = Af . �
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You may guess that neither the operator T1 nor T2 defined above is closed. This is a
standard situation that occurs in practice. Rarely can we compute explicitly what a closed
operator does to all its element in its domain. Thus, we have the definition

Definition 1.4. Closable operators A linear operator A : D(A)→ H is closable if it has
a closed extension.

Here is a simple statement about closable operators.

Lemma 1.5. A linear operator A : D(A) → H is closable if and only if for any sequence
fn ∈ D(A) such that, as n→∞, fn → 0 and Afn → g, it follows that g = 0.

Proof. Assume that A is closable and denote by B a closed extension. If fn ∈ D(A) then
fn ∈ D(B). Since Bfn = Afn → g and since fn → 0, we have, since B is closed that
g = B0 = 0. Conversely, consider the linear manifold

D = {f ∈ H : there exists fn ∈ D(A) , fn → f , Afn → g} .
On D we define Af = g. We have to show that g is independent of the sequence fn. Let
un ∈ D(A) be another sequence with un → f and Aun → h. We have to show that h = g.
Since fn− un → 0 and since A(fn− un)→ g− h it follows that f = g. Hence, A is defined on
D and it is easy to see that it is a linear operator. It remains to show A is closed. Let fn be
a sequence in D such that fn → f and Afn → g. We have to show that f ∈ D and Af = g.
Since for each n fn ∈ D there exists un ∈ D(A) such that

‖fn − un‖+ ‖Afn − Aun‖ <
1

n
.

Hence, un → f and Aun → g, i.e., f ∈ D and g = Af . Hence A is closed. �

We call A the closure of the (closable) operator A. It is the smallest closed extension of
A in the sense that if A ⊂ B and B is closed, then A ⊂ B. We leave this as an easy exercise
to the reader.

The notion of adjoint operators can easily be generalized to our new situation.

Definition 1.6. Adjoint operator Let A;D(A) → H be a linear operator (not necessarily
closed) with D(A) ⊂ H dense. Define D(A∗) to be the set of all elements f ∈ H such that the
linear functional

g → 〈Ag, f〉
extends to a bounded linear functional on all of H. Since D(A) ⊂ H is dense, there exists, by
the Riesz representation theorem a unique element h ∈ H such that

(f, Ag) = (h, g) .

We define A∗f = h. It is easily seen that A∗ is a linear operator.

Note, that D(A∗) is not empty since the zero vector is certainly in there. Here is another
reason why the notion of closed operator makes sense.

Theorem 1.7. Let A be a densely defined operator. Then the operator A∗ is closed.

Proof. Let fn ∈ D(A∗) such that fn → f and A∗fn → g. Then for all v ∈ D(A)

(f, Av) = lim
n→∞

(fn, Av) = lim
n→∞

(A∗fn, v) = (g, v) .

Hence, f ∈ D(A∗) and g = A∗f . �



3

Note, that we did not assume that A itself was closed, or even closable. The adjoint of any
densely defined operator is automatically closed.

Here are a few simple facts.

Lemma 1.8. a) If A ⊂ B then B∗ ⊂ A∗.
b) If A is closable, then (A)∗ = A∗.

Proof. f ∈ D(B∗) means that there exists h ∈ H such that

(f,Bv) = (h, v)

for all v ∈ D(B). Since A ⊂ B we also have that

(f, Av) = (f,Bv) = (h, v)

for all v ∈ D(A). Hence B∗ ⊂ A∗. To prove b) note that since A ⊂ A, (A)∗ ⊂ A∗. Now let
f ∈ D(A∗). There exists a unique h ∈ H such that

(f, Av) = (h, v)

all v ∈ D(A). If w ∈ D(A) there exists vn ∈ D(A) such that vn → w and Avn → Aw. Hence

(f, Aw) = lim
n→∞

(f, Avn) = lim
n→∞

(h, vn) = (h,w)

and hence f ∈ D((A)∗). Since h = A∗f we also have that (A)∗f = h. �

We have learned that by passing to adjoint operators one obtains closed operators. There is
a natural closed extension for a closable operator A and that would be (A∗)∗. This operator,
however, exists only if A∗ is densely defined. The following theorem is a bit trickier than we
have seen so far.

Theorem 1.9. An linear operator A : D(A) → H is closable if and only if A∗ is densely
defined, in which case A = (A∗)∗.

Proof. First we assume that A∗ is densely defined. f ∈ D((A∗)∗) means that there exists a
unique h = (A∗)∗f ∈ H so that

(f, A∗u) = (h, u) = ((A∗)∗f, u)

for all u ∈ D(A∗). If f ∈ D(A), then for all u ∈ D(A∗)

(u,Af) = ((A∗u, f)

from which it follows that f ∈ D((A∗)∗) and (A∗)∗f = Af . Hence A ⊂ (A∗)∗ and since (A∗)∗

is closed, the operator A is closable.
The proof of the converse is more difficult. Assume that A is closable. We have to show

that D(A∗) is dense. We want to show that the assumption that D(A∗) is not dense leads to
a contradiction. Since (A)∗ = A∗ we may assume that A = A, i.e., that A is closed. Since
D(A∗) is not dense, there exists a non-zero vector f ∈ H such that f ⊥ D(A∗). Consider the
minimization problem

D2 = inf
g∈D(A)

[
‖f − Ag‖2 + ‖g‖2

]
. (1)

The idea for this expression is to approximate the pair f, 0 ∈ H×H by elements of the form
Ag, g ∈ H×D(A). To see the relevance of (1) assume that the infimum is attained at h, i.e.,

D2 = ‖f − Ah‖2 + ‖h‖2 .
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Pick any v ∈ D(A) and consider

‖f − A(h + tv)‖2 + ‖(h + tv)‖2 ≥ D2 .

Taking the derivative in t at t = 0 yields, as usual,

−(f − Ah,Av) + (h, v) = 0

for all v ∈ D(A) or
(f − Ah,Av) = (h, v)

for all v ∈ D(A). This means that f − Ah ∈ D(A∗) and A∗(f − Ah) = h. Now, since
f ⊥ f − Ah we have that

‖f‖2 = (f, Ah) ,

and in particular
‖f‖ ≤ ‖Ah‖ .

Further, since h ∈ D(A)

‖h‖2 = (h,A∗(f − Ah) = (Ah, f)− ‖Ah‖2 = ‖f‖2 − ‖Ah‖2 ≤ 0 .

Hence h = 0 and hence Ah = 0, a contradiction, since f 6= 0.
We shall prove that the infimum is attained. Let gn ∈ D(A) be a minimizing sequence. As

in the proof of the projection theorem we find that

‖(f − Agn) + (f − Agm)

2
‖2 + ‖gn + gm

2
‖2 + ‖(f − Agn)− (f − Agm)

2
‖2 + ‖gn − gm

2
‖2

=
1

2

[
‖(f − Agn)‖2 + ‖f − Agm)‖2 + ‖gn‖2 + |gm‖2

]
.

From this we see that gn as well as Agn is a Cauhy sequence. Hence gn → h for some h ∈ H
and Agn → v ∈ H. Since A is closed h ∈ D(A) and Ah = v. Thus, we have that

D2 = ‖f − Ah‖2 + ‖h‖2 .

It remains to show that A = (A∗)∗. We have seen before that, A ⊂ (A∗)∗. To show the
converse we may assume that A is closed and pick any f ∈ D((A∗)∗). As before the problem

D2 = inf
g∈D(A)

[
‖f − g‖2 + ‖(A∗)∗f − Ag‖2

]
has a minimizer h ∈ D(A) (since A is closed). Again, we consider for v ∈ D(A) arbitrary

‖f − (h + tv)‖2 + ‖(A∗)∗f − A(h + tv)‖2 ≥ D2

and find
(f − h, v) + ((A∗)∗f − Ah,Av) = 0 .

This means that (A∗)∗f − Ah ∈ D(A∗) and

A∗((A∗)∗f − Ah) = −(f − h)

Taking the inner product with f − h yields

−‖f − h‖2 = (A∗((A∗)∗(f − h), f − h) = (((A∗)∗(f − h), (A∗)∗(f − h)) ≥ 0 .

Hence f = g ∈ D(A) and (A∗)∗f = Ag. �

Our goal is to study a certain class of operators, the self-adjoint operators. We start with
a defintion.
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Definition 1.10. Symmetric operators A linear operator A : D(A) → H is symmetric if
D(A) is dense in H and for all f, g ∈ D(A)

(Af, g) = (f, Ag) .

A simple consequence is that any symmetric operator A is extended by its adjoint, i.e.,

A ⊂ A∗ ,

in other words a symmetric operator is always closable. If B is any symmetric extension
of A,i.e., A ⊂ B we have that B∗ ⊂ A∗, i.e., we have

A ⊂ B ⊂ B∗ ⊂ A∗ .

A symmetric operator A with A = A∗ is called self-adjoint. Note that a self adjoint operator
is automatically closed. Moreover, it does not have symmetric extensions. A symmetric
operator A that has not symmetric extensions but A 6= A∗ is called maximally symmetric.

Here is a first simple criterion for self-adjointess.

Theorem 1.11. Let A : D(A)→ H be a symmetric operator with the property that Ran(A) =
H. Then A is selfadjoint.

Proof. Since D(A) ⊂ D(A∗) all we have to show is that f ∈ D(A∗) implies f ∈ D(A).
Consider g = A∗f . Since Ran(A) = H there exists h ∈ D(A) so that g = Ah. Now for all
v ∈ D(A)

(f, Av) = (A∗f, v) = (g, v) = (Ah, v) = (h,Av) .

If u ∈ H is arbitrary, there exists v ∈ D(A) such that u = Av. Hence we have for all u ∈ H

(f, u) = (h, u)

and thus, f = h ∈ D(A). �

The following surprising theorem is due to von Neumann.

Theorem 1.12. Let A : D(A) → H be a densely defined closed operator. Then, D = {h ∈
D(A) : Ah ∈ D(A∗)} is dense and A∗A is a self-adjoint operator with domain D.

Proof. We use a similar technique as before. For f ∈ H consider the minimization problem

D2 = inf
g∈D(A)

[
‖f − g‖2 + ‖Ag‖2

]
.

Let gn ∈ D(A) be a minimizing sequence, i.e.,

‖f − gn‖2 + ‖Agn‖2 → D2 .

Let us go through the argument in detail. By the parallelogram identity we find

‖(f − gn) + (f − gm)

2
‖2 + ‖(f − gn)− (f − gm)

2
‖2 + ‖Agn + Agm

2
‖2 + ‖Agn − Agm

2
‖2

=
1

2
‖f − gn‖2 +

1

2
‖Agn‖2 +

1

2
‖f − gm‖2 +

1

2
‖Agm‖2 .

Put in another way

‖f − gn + gm
2
‖2 + ‖A(gn + gm)

2
‖2 + ‖gn − gm

2
‖2 + +‖Agn − Agm

2
‖2
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converges as n,m→∞ to D2. Since

D2 ≤ ‖f − gn + gm
2
‖2 + ‖A(gn + gm)

2
‖2

we must have that gn as well as Agn are Cauchy sequences and hence converge to h resp. v.
Since A is closed, h ∈ D(A) and Ah = v. Hence

D2 = ‖f − h‖2 + ‖Ah‖2 .

The usual variational argument h→ h + tv, v ∈ D(A) leads to

−(f − h, v) + (Ah,Av) = 0

all v ∈ D(A). Since D(A) is dense Ah ∈ D(A∗) and

A∗Ah = f − h

or
A∗Ah + h = f .

This means that for any f ∈ H there exists h ∈ D with A∗Ah + h = f . This means that the
operator A∗A + I is surjective. If h1, h2 ∈ D and A∗Ah1 + h1 = f = A∗Ah2 + h2 it follows
that

A∗A(h2 − h1) + (h2 − h1) = 0 .

Since h2 − h1 ∈ D we have that

‖A(h2 − h1)‖2 + ‖h2 − h1‖2 = 0

and hence A∗A+ I is injective on D. It remains to show that the operator A∗A is symmetric.
The domain D is dense, for suppose that f ⊥ D then

f = A∗Ah + h

for a unique h ∈ D. Hence

0 = (h, f) = (h,A∗Ah) + (h, h) = ‖Ah‖2 + ‖h‖2

which implies that h and hence f = 0. Finally, A∗A is symmetric on D since for f, g ∈ D

(f, A∗Ag) = (Af,Ag) = (A∗Af, g) .

Hence, A∗A + I is symmetric on D and its range is the whole Hilbert space and hence it is
self-adjoint.

�


