
1. L2-spaces

In this section we establish that the space of all square integrable functions form a Hilbert
space. To start, consider all continuous functions on some interval I which may be the half
line or the whole real line and define

L2(I) = {f :

∫
I

|f(x)|2dx <∞} .

It is quite easy to verify that L2(I) is a linear space with inner product

(f, g) =

∫
I

f(x)g(x)dx .

Unfortunately, this spaces is not complete. Consider I = [−1, 1] and the sequence of functions
f (k)(x) = −1 for −1 ≤ x ≤ − 1

k
, f (k)(x) = kx for − 1

k
≤ x ≤ 1

k
and f (k)(x) = 1 for 1

k
≤ x ≤ 1.

Clearly these functions are continuous for each k = 1, 2, . . . . If ` ≥ k we have that∫
I

|f (`)(x)− f (k)(x)|2dx =

∫ 1
k

− 1
k

|f (`)(x)− f (k)(x)|2dx ≤ 4× 2

k

from which we see that f (k) is a Cauchy sequence. The limit of this sequence, however, is not
a continuous function and the limit is not in our linear space. There is a process of completing
this space at the price that the integral has to be interpreted according to Lebesgue.

The idea is the following. Consider a positive function f and we want to give a definition
of ∫

I

f(x)dx .

We interpret this integral as the area underneath the graph of f over I. One way of approx-
imating this area is according to Riemann which you have learned in your analysis course.
Another one is to look at the length of the level sets of the function f which is given by

{x ∈ I : f(x) > t} .
If we denote by |{x ∈ I : f(x) > t}| the length of these level sets we can think of the area as∫ M

0

|{x ∈ I : f(x) > t}|dt , (1)

where M is the maximal value of f . Note that |{x ∈ I : f(x) > t}| is a decreasing function of
t and hence it is Riemann integrable.

Now observe, that the level sets can be quite crazy sets that do not necessarily have a
length. So the first step is to state properties that such sets must have in order to have a
chance of making sense out of this integral. We call such sets measurable and require the
following:

a) If A ⊂ I is measurable, so is its complement Ac.
b) I is measurable.
c) If A1, A2, . . . is a countable family of measurable sets, then their union is also measurable.
Any collection of sets that have the above properties we call a sigma algebra.
In a further step we now define what we mean by the volume of such sets,i.e., the measure

of such sets. A measure µ is a function from a sigma algebra Σ into the positive real numbers
that has the following properties

a) µ(A) ≤ µ(B) if A ⊂ B and A,B ∈ Σ.
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b) Let A1, A2, . . . be a countable collection of disjoint sets in Σ. Then

µ(∪∞j=1Aj) =
∞∑

j=1

µ(Aj) .

This last property is called countable additivity of the the measure µ. This property is the
key in establishing completeness of spaces of integrable functions.

A consequence of the countable additivity are the following two statements:
a) If A1 ⊂ A2 ⊂ · · · is an increasingly nested sequence of sets in Σ, then

lim
N→∞

µ(∪N
j=1Aj) = µ(∪∞j=1Aj)

and
b) If A1 ⊃ A2 ⊃ · · · is a decreasingly nested sequence of set in Σ, then

lim
N→∞

µ(∩N
j=1Aj) = µ(∩∞j=1Aj) .

Now we close in on our definition of the integral. A function f : I → R+ is measurable if
the sets {x ∈ I : f(x) > t} are measurable for all t ∈ R.

Given a non-negative measurable function f and a measure µ we say that the function is
summable or integrable if∫

I

f(x)µ(dx) :=

∫
µ({x ∈ I : f(x) > t})dt <∞

where, as before, the last integral is a Riemann integral, since the function t → µ({x ∈ I :
f(x) > t}) is decreasing.

Remark 1.1. There could be sets that have zero measure. Thus modifying the function on
a set of zero measure would not affect the integral. We say that a certain property holds
almost everywhere with respect to µ if the set where the property does not hold has zero
µ measure.

There are two important theorems that follow from these definitions.

Theorem 1.2. Monotone convergence Let f (k) be a sequence of summable functions and
assume f (k)(x) ≤ f (k+1)(x) for almost all x ∈ I. Then the limit

lim
k→∞

f (k)(x) := f(x)

exists for almost every x and is measurable. Moreover,

lim
k→∞

∫
I

f (k)(x)µ(dx) =

∫
I

f(x)µ(dx) ,

in the sense that if one of the quantities is infinite so is the other.

The other important theorem is

Theorem 1.3. Dominated convergence Let f (k)(x) be a sequence of summable functions
that converges almost everywhere with respect to µ to a function f . If there exists a summable
function G(x) such that

|f (k)(x)| ≤ G(x)
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for all k = 1, 2, 3, . . . , then f(x) is measurable, summable and

lim
k→∞

∫
I

f (k)(x)µ(dx) =

∫
I

f(x)µ(dx) .

The big questions is whether such σ algebras and measures exist. This is the hard part of
the theory and you are referred to the books on measure theory. on the real line there exists a
unique translation invariant measure L, the Lebesgue measure. Translation invariant means
that L(B) = L(A) whenever B is a translate of A.

The beauty of all this is that it works in great generality. We can replace the interval I by
any set Ω and µ be any measure on a sigma algebra of subsets of Ω. The theorems stated
above continue to hold in this case too.

Definition 1.4. L2(Ω, µ)-space This space consists of all square summable functions f : Ω→
C.

We are ready to state the important

Theorem 1.5. Riesz-Fischer The space L2(Ω, µ) endowed with the inner product

(f, g) =

∫
Ω

f(x)g(x)µ(dx)

is a Hilbert space.

Proof. Let f (k) be a Cauchy sequence in L2(Ω, µ). This means that for any ε > 0 there exists
N so that for all k, ` > N

‖f (k) − f (`)‖ < ε .

Hence, there exists k1 so that for all ` > k1

‖f (k1) − f (`)‖ < 1

2
.

Likewise, there exists k2 > k1 so that for all ` > k2

‖f (k2) − f (`)‖ < 1

22
.

Continuing this way we find a sequence k1, k2, k3, . . . such that for all j = 1, 2, . . .

‖f (kj) − f (kj+1)‖ < 1

2j
.

Now consider the sequence f (kj) and write

f (kj) = f (k1) + [f (k2) − f (k1)] + [f (k3) − f (k2)] + · · ·+ [f (kj) − f (kj−1)] .

If we set

F (j) = |f (k1)|+ |f (k2) − f (k1)|+ |f (k3) − f (k2)|+ · · ·+ |f (kj) − f (kj−1)| ,
we obviously have that

|f (kj)| ≤ F (j) .

The sequence F (j)(x) is a monotone increasing sequence and hence converges to a function
F (x). This implies that the sequence f (kj)(x) converges to some function f(x) since the partial
sums converge absolutely. Further,

‖F (j)‖ ≤ ‖f (k1)‖+ ‖f (k2) − f (k1)‖+ ‖f (k3) − f (k2)‖+ · · ·+ ‖f (kj) − f (kj−1)‖
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which is bounded above by

‖f (k1)‖+
1

2
+

1

22
+ · · ·+ 1

2j
< ‖f (k1)‖+ 1 .

Hence by the monotone convergence theorem we find that F is square summable and

|f (kj)(x)− f(x)| ≤ |f (kj)(x)|+ |f(x)| ≤ 2F (x) .

Since f (kj)(x) converges to f(x) for every x we have by the dominated convergence theorem
that

lim
j→∞

∫
Ω

|f (kj)(x)− f(x)|2µ(dx) = 0 .

In other words we have for the subsequence kj that

lim
j→∞
‖f (kj) − f‖ = 0 .

We have to show that the whole sequence converges. For this, fix and ε > 0 and pick N such
that for kj > N, ‖f (kj) − f‖ < ε/2 and for ` > N, ‖f (kj) − f (`)‖ < ε/2. Then for all ` > N

‖f (`) − f‖ ≤ ‖f (kj) − f (`)‖+ ‖f (kj) − f‖ < ε.
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