1. L%-spaces

In this section we establish that the space of all square integrable functions form a Hilbert
space. To start, consider all continuous functions on some interval I which may be the half
line or the whole real line and define

(1) = {f - / (@)Pdz < 0o}

It is quite easy to verify that L?*(I) is a linear space with inner product

(f,9) = /Img(:c)dx .

Unfortunately, this spaces is not complete. Consider I = [—1, 1] and the sequence of functions
fR ()= ~1for -1 <2< —%, f®)(x) = kx for —% <z< % and f®)(z) =1 for % <zx<l.
Clearly these functions are continuous for each k£ = 1,2,.... If £ > k we have that

1
k 2
[1£96@) = 9@Pda = [ 119 - @) Pde < 4 x ]
: -1

from which we see that f* is a Cauchy sequence. The limit of this sequence, however, is not
a continuous function and the limit is not in our linear space. There is a process of completing
this space at the price that the integral has to be interpreted according to Lebesgue.

The idea is the following. Consider a positive function f and we want to give a definition

of
/If(x)dx :

We interpret this integral as the area underneath the graph of f over /. One way of approx-
imating this area is according to Riemann which you have learned in your analysis course.
Another one is to look at the length of the level sets of the function f which is given by

{zel: flx)>t}.
If we denote by [{x € I : f(z) > t}| the length of these level sets we can think of the area as

/0 Hzel: flz)>t}dt, (1)

where M is the maximal value of f. Note that |[{z € I : f(x) > t}| is a decreasing function of
t and hence it is Riemann integrable.

Now observe, that the level sets can be quite crazy sets that do not necessarily have a
length. So the first step is to state properties that such sets must have in order to have a
chance of making sense out of this integral. We call such sets measurable and require the
following:

a) If A C I is measurable, so is its complement A°.

b) I is measurable.

c) If Ay, Ay, ... is a countable family of measurable sets, then their union is also measurable.

Any collection of sets that have the above properties we call a sigma algebra.

In a further step we now define what we mean by the volume of such sets,i.e., the measure
of such sets. A measure u is a function from a sigma algebra > into the positive real numbers
that has the following properties

a) w(A) < u(B)if AC Band A, B € X.



b) Let Ay, As,... be a countable collection of disjoint sets in ¥. Then
p(U2 A7) = (4 .
j=1

This last property is called countable additivity of the the measure p. This property is the
key in establishing completeness of spaces of integrable functions.

A consequence of the countable additivity are the following two statements:

a) If Ay C Ay C -+ is an increasingly nested sequence of sets in X, then

]\}EHOON(ijzlAj) = (U521 45)

and
b) If A} D A D -+ is a decreasingly nested sequence of set in X, then

A}Eﬂwﬂ(ﬂﬁilfb) = (NG, 4;5) -

Now we close in on our definition of the integral. A function f: I — R, is measurable if
the sets {x € I : f(x) >t} are measurable for all £ € R.

Given a non-negative measurable function f and a measure p we say that the function is
summable or integrable if

/f(x)u(da:) - /u({x € 1: f(z) > t))dt < 0o

I

where, as before, the last integral is a Riemann integral, since the function ¢t — p({z € I :
f(x) > t}) is decreasing.

Remark 1.1. There could be sets that have zero measure. Thus modifying the function on
a set of zero measure would not affect the integral. We say that a certain property holds
almost everywhere with respect to pu if the set where the property does not hold has zero
L measure.

There are two important theorems that follow from these definitions.

Theorem 1.2. Monotone convergence Let f*) be a sequence of summable functions and
assume f*)(x) < f**HD(z) for almost all x € I. Then the limit

lim f© () = f()

exists for almost every x and is measurable. Moreover,

lim / FO@tdn) = [ auts)

k—o0
in the sense that if one of the quantities is infinite so is the other.
The other important theorem is

Theorem 1.3. Dominated convergence Let f*)(x) be a sequence of summable functions
that converges almost everywhere with respect to p to a function f. If there exists a summable
function G(x) such that

[fP(@)] < G(a)



forallk =1,2,3,..., then f(x) is measurable, summable and

g&/f“ i) = [ flayn(a).

The big questions is whether such o algebras and measures exist. This is the hard part of
the theory and you are referred to the books on measure theory. on the real line there exists a
unique translation invariant measure £, the Lebesgue measure. Translation invariant means
that £(B) = L(A) whenever B is a translate of A.

The beauty of all this is that it works in great generality. We can replace the interval I by
any set {2 and p be any measure on a sigma algebra of subsets of 2. The theorems stated
above continue to hold in this case too.

Definition 1.4. L?(Q, u)-space This space consists of all square summable functions f :  —

C.
We are ready to state the important

Theorem 1.5. Riesz-Fischer The space L*(), 1) endowed with the inner product
~ [ Fgta)n(a
Q

Proof. Let f*) be a Cauchy sequence in L?(Q, ;). This means that for any ¢ > 0 there exists
N so that for all k., ¢ > N

1s a Hilbert space.

If® =9 <e.
Hence, there exists k; so that for all £ > k;

1
(k1) _ r@O) « =
I = fO) <
Likewise, there exists ko > ki so that for all £ > ks
1
I — £ <

Continuing this way we find a sequence ki, ks, k3, ... such that for all j =1,2,...
1
(k) _ flkjp1) _
8 — ) <
Now consider the sequence f*3) and write

f(kj) — f(k1) + [f(kz) _ f(kl)] + [f(ks) _ f(’fz)] I [f(kj) _ f(kj—l)] )

If we set

() — |f(k1)| + |f(k2) _ f(kl)’ + |f(k3) _ f(k‘2)| 4+t ‘f(kj) i f(kj_1)| ’
we obviously have that
‘f(kj)| < FO)
The sequence FU)(x) is a monotone increasing sequence and hence converges to a function

F(z). This implies that the sequence f*1)(x) converges to some function f(z) since the partial
sums converge absolutely. Further,

HF(J’)H < ”f(kl)H + Hf(kz) _ f(kl)H + Hf(ks) _ f(kz)H I Hf(kj) _ f(kjfl)H



4
which is bounded above by
1 1 1
(k1) T i || ) 1.
Hence by the monotone convergence theorem we find that F' is square summable and
[f5) (@) = f@)] < 15 ()] + | f(2)] < 2F () -

Since f*)(z) converges to f(z) for every x we have by the dominated convergence theorem
that

lim g |f8(2) = f(a)]Pp(dz) = 0.

Jj—00

In other words we have for the subsequence k; that
lim || f*3) — f|| = 0.
j—o0

We have to show that the whole sequence converges. For this, fix and € > 0 and pick N such
that for k; > N, || f*) — f|| < e/2 and for £ > N, ||f*) — f®O| < £/2. Then for all £ > N

1O = FI < NP5 = fOU+ F%) = [l < e



	1. L2-spaces

