
1. The spectral theorem for unitary operators

In this section we give a simple proof of the spectral theorem for unitary operators. We
will follow along the same line of thought as we did for bounded self adjoint operators. The
main reason for doing this is, because it yields a straightforward proof of the spectral theorem
for unbounded self adjoint operators. Consider the set P of all Laurent polynomials, i.e.,
expressions of the form

p(z) =
∑
k

ckz
k , z ∈ C

where the summation range is finite but may contain positive as well as negative integers.
Recall that the spectrum of a unitary is a subset of the unit circle. We start with a bound.

Lemma 1.1. Let V be a unitary operator, let p be a Laurent polynomial and consider

p(V ) =
∑
k

ckV
k .

Then
‖p(V )‖ = sup

z∈σ(V )

|p(z)| . (1)

Proof. Any Laurent polynomial p(z) can be written

z−Nq(z)

where N is an integer and q(z) is a polynomial. Hence

p(V ) = V −Nq(V ) .

We know from the lecture that
q(σ(V )) = σ(q(V )) ,

and we also know that the spectral radius

r(q(V )) = ‖q(V )‖ .
Hence we have that

‖p(V )‖ = ‖q(V )‖ = r(q(V )) = sup
z∈σ(q(V ))

|z| = sup
z∈σ(V )

|q(z)| .

Since the spectrum of a unitary operator is a subset of the unit circle, we find that

sup
z∈σ(V )

|q(z)| = sup
z∈σ(V )

|z−Nq(z)| = sup
z∈σ(V )

|p(z)| .

�

The set of Laurent polynomials is obviously an algebra but not closed under complex con-
jugation. If z is on the unit circle, i.e., of the form z = eiφ then

p(eiφ) =
∑
k

cke
−ikφ =

∑
k

c−ke
ikφ .

Thus, if p is a Laurent polynomial with coefficients {ck} then we define p to be the Laurent
polynomial with coefficients {c−k}, i.e.,

p(z) =
∑
k

c−kz
k .

1



2

In this way we see that the set of all Laurent polynomials, is an algebra that is closed under
the operation p→ p.

Lemma 1.2. The set of all operators of the form p(V ) where p ∈ P form a commutative
algebra that is closed under ∗, in fact

(p(V ))∗ = p(V ) . (2)

Hence, its closure is a C∗ algebra which we denote by PV .

Proof. Observing that

p(V )∗ =

(∑
k

ckV
k

)∗
=
∑
k

ckV
∗k =

∑
k

c−kV
k = p(V ) ,

we see that the set is closed under the ∗ operation. The set is clearly commutative and it is
elementary to verify that the set is an algebra. �

The Laurnt polynomials in P when restricted to the unique circle yield all trigonometric
polynomials. By Weierstrass’s theorem, the trigonometric polynomials on the set σ(V ) (which
is a compact set) are dense in C(σ(V )), which together with complex conjugation is a C∗

algebra. Likewise, by taking the closure in the operator norm of the operators of the form
p(V ), p ∈ P we obtain a C∗ algebra PV . The map that associates with each element p ∈ P
the operator p(V ) is continuous, thanks to Lemma 1.1 and therefore extends uniquely to a
map Ψ : C(σ(V ))→ PV .

Lemma 1.3. The map Ψ is an isometric C∗ homorphism. In fact we have for all p ∈ C(σ(V ))

‖p(V )‖ = sup
z∈σ(V )

|p(z)| .

Proof. It is straightforward to see that Ψ is linear and and that Ψ(pq) = Ψ(p)Ψ(q). It follows
from (2) that for any p ∈ C(σ(V ))

Ψ(p)∗ = Ψ(p) .

The isometry follows from Lemma 1.1. �

If p restricted to σ(V ) is identically zero then p(V )) is the zero operator by (1). Hence Ψ
induces a map

Φ : C(σ(V ))/KerΨ→ PV
which is an isometric C∗ algebra isomorphism.

Next pick any vector f , ‖f‖ = 1 and consider the subspace of H generated by vectors of
the form Φ(p)f , p ∈ C(σ(V )). This subspace might be dense in H or not. In any case the
closure of this set is a subspace which we denote by Hf . Next, consider the functional

p→ 〈f,Φ(p)f〉 .
The functional is linear. It is positive, for if p ∈ C(σ(V )) is positive then p = gg and hence

〈f,Φ(p)f〉 = 〈f,Φ(g)Φ(g)f〉 = 〈f,Φ(g)∗Φ(g)f〉 = ‖Φ(g)f‖2 ≥ 0 .

By the Riesz representation theorem there exists a measure µf such that

〈f,Φ(p)f〉 =

∫
{φ:eiφ∈σ(V )}

p(eiφ)µf (dφ).
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Note that

1 = ‖f‖1 = 〈f,Φ(I)f〉 =

∫
{φ:eiφ∈σ(V )}

µf (dφ) ,

and hence µ is a probability measure. Now we define the operator

U : C(σ(V ))→ Hf

by setting
Up = Φ(p)f .

The range of this operator is dense in Hf and

‖Up‖2 = ‖Φ(p)f‖2 = 〈f,Φ(p)∗Φ(p)f〉 = 〈f,Φ(|p|2)〉 =

∫
{φ:eiφ∈σ(V )}

|p(eiφ)|2µf (dφ)

Since C(σ(V )) is dense in L2(σ(V ), µf )) and since Φ is an isomorphism, the operator U extends
uniquely to a unitary operator

U : L2(σ(V ), µf ))→ Hf .

For any element q ∈ L2(σ(V ), µf )) we find

U−1V Uq = U−1V q(V ) = zq(z) , z = eiφ

and hence V restricted to Hf is unitarily equivalent to a multiplication operator. Let g ⊥ Hf

be another vector. Then for any h ∈ Hf

〈V g, h〉 = 〈g, V ∗h〉 = 〈g, V −1h〉 = 0

since V −1h ∈ Hf . Hence Hg ⊥ Hf and a simple argument, using Zorn’s lemma, shows that H
is the orthogonal sum of Hilbert spaces, each of them invariant under V and on each of them
V is unitarily equivalent to a multiplication operator. More precisely, the exists an index set
I and fα ∈ H so that

U : ⊕α∈IL2(σ(V ), µfα)→ H
is unitary. Moreover, U−1V U leaves each space L2(σ(V ), µfα) invariant and restricted to this
space U−1V Up = eiφp.

From this it is not hard to recover the spectral theorem for unbounded self adjoint operators.
Assume that A : D(A)→ H is self adjoint. We know that

Ran(A± iI) = H
Pick any f ∈ Ran(A+ iI). There exists a unique h ∈ D(A) so that

f = (A+ iI)h .

Define
V f = (A− iI)h .

The operator
V : Ran(A+ iI)→ Ran(A− iI)

is onto and
‖V f‖2 = ‖(A+ iI)h‖2 = ‖Ah‖2 + ‖h‖2 = ‖f‖2 .

Hence, V is unitary. V is called the Cayley transform of A. We can recover A from V . If
we set

h =
1

2i
(f − V f) (3)
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then

Ah =
1

2
(f + V f) . (4)

Note that the domain of A consists precisely of those vectors h that are of the form (3).

Theorem 1.4. Let V be a unitary operator on H and assume that the set of vectors D of the
form

h =
1

2i
(f − V f) , f ∈ H (5)

is dense. For any h ∈ D define

Ah =
1

2
(f + V f) .

Then A is self adjoint.

Proof. Note that if f1, f2 are two elements with

f1 − V f1 = f2 − V f2
then with g = f1 − f2, V g = g. If h ∈ D then

〈h, g〉 =
1

2i
〈f − V f, g〉 =

1

2i
〈f, g − V −1g〉 = 0

and, since D is by assumption dense, g = 0. This shows that the operator A is well defined,
because for any h ∈ D the f in (5) is unique. That A is symmetric is a straightforward
computation. Next, A is closed. If vn ∈ D with vn → v and Avn → u then

vn =
1

2i
(fn − V fn)

and

Avn =
1

2i
(fn + V fn)

so that
fn = (A+ iI)vn , V fn = (A− iI)vn .

Hence fn converges to f = u+ iv and V fn converges to u− iv. Because V is continuous

V f = u− iv
and therefore

v =
1

2i
(f − V f) ∈ D

and

u =
1

2
(f + V f) = Av .

Since A is symmetric and closed Ran(A± iI) is also closed. Let g ⊥ Ran(A+ iI). Then

〈(A+ iI)h, g〉 = 0

for all h ∈ D. Because

h =
1

2i
(f − V f)

and Ah = 1
2
(f + V f), we have that (A+ iI)h = f and hence

〈f, g〉 = 0

for all f ∈ H. Hence g = 0 and Ran(A + iI) = H. The argument for Ran(A − iI) = H is
similar. Thus, by the fundamental theorem about self adjoint operators A is self adjoint. �
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Now, we can use the spectral theorem for unitary operators to prove the spectral theorem
for unbounded self adjoint operators.

Theorem 1.5. Let A : D(A)→ H be a self adjoint operator. There exists a unitary operator
U and a collection of spaces L2(σ(A), να) such that

U : ⊕αL2(σ(A), να)→ H
is unitary. The element Up, p ∈ L2(σ(A), να) is in the domain of A if and only if∫

σ(A)

|λ|2|p(λ)|2να(λ) <∞

in which case
U−1AUp(λ) = λp(λ) .

Proof. Let V be the Cayley Transform of A. Consider f ∈ D(A) and consider the space Hf

for which f is a V -cyclic vector i.e., the span of {V kf}∞k=−∞ is dense in Hf . V restricted to
Hf is a unitary operator Vf . The set Df of all vectors h of the form

h =
1

2i
(g − Vfg) , g ∈ Hf

is dense in Hf . To see this suppose that there exists u ∈ Hf so that

〈 1

2i
(g − Vfg), u〉 = 0

for all g ∈ Hf . Then
〈g, u− V −1f u〉 = 0

for all g ∈ Hf and since u− V −1f u ∈ Hf we must have that Vfu = u and hence V u = u. This
would imply that the set of all vectors of the form

1

2i
(g − V g)

is not dense in H, a contradiction. By the previous theorem, the operator Vf defines a self
adjoint operator B on Hf which is easily seen to be A restricted to Df . Since we shall be
working exclusively in the space Hf we shall drop the subscript which is the same as assuming
that the f is a cyclic vector for V .

Pick any function g ∈ H. By the spectral theorem for unitary operators we can write
g = Upg for some function pg ∈ L(σ(V ), µ) and hence

U−1h(eiφ) =
1

2i
(pg − U−1V Upg)(eiφ) =

1

2i
(1− eiφ)pg(e

iφ)

and

U−1Ah(eiφ) =
1

2
(pg + U−1V Upg)(e

iφ) =
1

2
(1 + eiφ)pg(e

iφ) .

It follows that
U−1Ah(eiφ) = cotan(φ/2)U−1h(eiφ) ,

or
U−1AU = Mcotan(φ/2) .

Hence, h ∈ D(A) if and only if pg = U−1h satisfies∫
{φ:eiφ∈σ(V )}

[cotan(φ/2)]2|pg|2µ(dφ) <∞ .
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If h ∈ D(A) then
Ah = i(V + 1)(V − 1)−1h

and the spectrum of A is the image of σ(V ) by the function

i
z + 1

z − 1

which maps the unit circle to the real line.
Pick any set S ⊂ σ(A) and consider the ‘push - forward’ of the measure µ onto σ(A) given

by

ν(S) =

∫
{φ:cotan(φ/2)∈S}

µ(dφ) .

Then ∫
{φ:eiφ∈σ(V )}

[cotan(φ/2)]2|pg|2µ(dφ) =

∫
σ(A)

λ2|pg(cotan−1(λ)|2ν(dλ) .

and
U−1AU = Mλ

where Mλ is multiplication by λ. �

The spectral theorem is actually useful. E.g., consider the initial value problem

df

dt
= −iAf , f |t=0 = f0 (6)

where A is a self adjoint operator. Assume that f0 ∈ D(A). Using the spectral theorem this
equation is equivalent to the equation

dp

dt
(λ) = −iλp(λ)

where p = U−1f . This equation is readily solved by

p(λ, t) = e−iλtp0(λ)

where
p0(λ) = U−1f0 .

Therefore, the solution is given by

f = Ue−iMλtU−1f0

and we have established a global existence result for the differential equation (6). Note that,
because the domain D(A) is dense, the time evolution is in fact defined for all f0 ∈ H. Also
note that the operator Ue−iMλtU−1 is in fact a unitary operator.


