
1. Application of functional analysis to PDEs

1.1. Introduction. In this section we give a little introduction to partial differential equa-
tions. In particular we consider the problem

−∆u(x) = f(x) x ∈ Ω , u(x) = 0 x ∈ ∂Ω (1)

where Ω is some open bounded domain in Rn. The condition on u on the boundary is called
a ‘Dirichlet’ boundary condition. We shall assume that f ∈ L2

|Omega).
This equation can be solved explicitely for a limited number of situations where the domain

has symmetry, like a ball or a half space. In general to infer the existence of a solution is a
difficult problem.

In order to harness the power of functional analysis for proving the existence of a solution
one relaxes the problem.

Recall the definition of H1(Ω) form the exercises. These were all functions f ∈ L2(Ω with
the property that there exist function gif ∈ L2(Ω) so that∫

Ω

f
∂φ

∂xi
dx = −

∫
Ω

gifφdx

for all φ ∈ C∞
c (Ω). It was shown in the exercises that H1(Ω) endowed with the inner product∫

Ω

fgdx+
n∑
i=1

∫
Ω

gifg
i
hdx (2)

is a Hilbert space. We shall, henceforth, abuse notation and write

gif (x) =
∂f

∂xi
(x) .

Note that since Ω is bounded the constant function is certainly in H1(Ω). What about
functions that vanish on the boundary. Note that anay function ψ ∈ C∞

c (Ω) is in H1(Ω). in
fact, the eake derivative equals the usual derivative in this case (why’?).

To capture functions in H1(Ω) that vanish on the boundary of Ω we introduce a new space.

Definition 1.1. The space H1
0 (Ω) is the closure of the set C∞

c (Ω) in the norm of H1(Ω). It
is a Hilbert space with the inner product (2).

Almost by definition this space is a Hilbert space. If fn is a Cauchy sequence in H1
0 (Ω) then

it converges in H1(Ω) to some element f . Since each fn ∈ H1
0 (Ω) there exists φn ∈ C∞

c (Ω) so
that

‖fn − φn‖H1(Ω) <
1

n
.

Hence

‖f − φn‖H1(Ω) ≤ ‖f − fn‖H1(Ω) + ‖fn − φn‖H1(Ω) < ‖f − fn‖H1(Ω) +
1

n

which tends to zero as n→∞. Hence f ∈ H1
0 (Ω).

Definition 1.2. u ∈ H1
0 (Ω) is a weak solution of (1) if for every v ∈ H1

0 (Ω) we have that∫
Ω

∇u · ∇vdx =

∫
Ω

fvdx (3)

1
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Note that we have dropped the complex conjugation since we shall be dealing with real
valued functions. Also note that the derivatives are all in the weak sense.

Suppose that u is a twice differentiable solution of (1). Then we can integrate by parts and
obtain ∫

Ω

[−∆u− f ]vdx = 0

from which we conclude that −∆u = f . The path to this stage is, however, thorny and we
shall give some indication how to procedd at the end.

1.2. An important inequality. Let f be a smooth function of the intervall [0, a] and assume
that f(a) = f(0) = 0. Our goal is to get a lower bound on the ratio∫ a

0
|f ′(x)|2dx∫ a

0
|f(x)|2dx

. (4)

We know from Fourier analysis that any smooth function can be expanded in a Fourier series
of the type

f(x) =
∞∑
k=1

ck
√

2 sin(
πkx

a
)

The functions
√

2 sin(
πkx

a
)

form an orthonormal system and hence we have that∫ a

0

|f(x)|2dx =
∞∑
k=1

|ck|2 .

The function f ′ is given by

f ′(x) =
π

a

∞∑
k=1

kck
√

2 cos(
πkx

a
)

and once more using orthogonality we find that∫ a

0

|f ′(x)|2dx =
(π
a

)2
∞∑
k=1

k2|ck|2 .

Hence our ratio (4) can be expressed as(π
a

)2
∑∞

k=1 k
2|ck|2∑∞

k=1 |ck|2
.

Clearly by replacing k2 by its smalles value 1 we find that(π
a

)2
∑∞

k=1 k
2|ck|2∑∞

k=1 |ck|2
≥
(π
a

)2

with equality if and only if ck = 0 for all k > 1. Thus, we proved
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Theorem 1.3 (Wirtinger’s inequality). For any smooth function f on the interval [0, a] with
f(0) = f(a) = 0 we have that ∫ a

0

|f ′(x)|2dx ≥
∫ a

0

|f(x)|2dx

with equality only if f is a multiple of sin(πx
a

).

Here is another maybe even simpler proof for this inequality. Since f(0) = f(a) = 0 we
may write

f(x) = h(x)g(x)

where h(x) = sin(πx
a

) and g(x) some function which has compact support. Now

f ′(x) = h′(x)g(x) + h(x)g′(x)

so that∫ a

0

|f ′(x)|2dx =

∫ a

0

h′(x)2g(x)2dx+

∫ a

0

h(x)2g′(x)2dx+

∫ a

0

h(x)h′(x)[g(x)2]′dx .

Integrating the last term by parts and noting that the boundary terms vanish we get∫ a

0

|f ′(x)|2dx =

∫ a

0

h′(x)2g(x)2dx+

∫ a

0

h(x)2g′(x)2dx−
∫ a

0

[h(x)h′(x)]′[g(x)2]dx .

=

∫ a

0

h(x)2g′(x)2dx−
∫ a

0

h(x)h′′(x)[g(x)2]dx .

Since

−h′′(x) =
(π
a

)2

h(x)

we find∫ a

0

|f ′(x)|2dx =

∫ a

0

h(x)2g′(x)2dx+
(π
a

)2
∫ a

0

h(x)2[g(x)2]dx ≥
(π
a

)2
∫ a

0

f(x)2dx .

This theorem has an interesting consequence. Let Ω ∈ Rn be an open set and assume that Ω
fits into a slab, i.e., between two parallel n− 1 dimensional planes. Denote by D the infimum
of the distances of the pairs of planes so that Ω fits between them.

Theorem 1.4. Let u ∈ C∞
c (Ω). Then∫

Ω

|∇u(x)|2dx ≥
( π
D

)2
∫

Ω

|u(x)|2dx .

Proof. let u ∈ C∞
c (Ω). The support C, i.e., the closure of the set where the function does

not vanish is a compact set, by assumption. Hence it has a diameter d < D (why?). Pick
any 0 < δ < D − d There exist two planes a distance d + δ appart so that C fits between
these two planes (why?). By rotating the function we can assume that these two planes are
perpendicular to the x-axis and by translating the function w can assum that one of the planes
passes through the origin and the other through the point (d+ δ, 0, . . . , 0). We estimate∫

Ω

|∇u|2dx =

∫
Rn−1

∫ d+δ

0

|∇u|2dx ≥
∫
Rn−1

[∫ d+δ

0

| ∂u
∂x1

|2dx1

]
dx2 · · · dxn

Using Wirtinger’s inequality we find for every fixed x2, . . . , xn∫ d+δ

0

| ∂u
∂x1

|2dx1 ≥
(

π

d+ δ

)2 ∫ d+δ

0

|u|2dx1
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which implies the result. �

As an immediate corollary we have

Theorem 1.5. Let u be any function in H1
0 (Ω). Then∫

Ω

|∇u(x)|2dx ≥
( π
D

)2
∫

Ω

|u(x)|2dx .

In particular √∫
Ω

|∇u(x)|2dx

is a norm which is equivalent with ‖u‖H1(Ω) and H1
0 (Ω) with inner product

(u, v)0 =

∫
Ω

∇u · ∇vdx

is a Hilbert space.

Proof. Let u ∈ H1
0 (Ω). Then there exists a sequence of function φn ∈ C∞

c (Ω) so that ‖u −
φn‖H1(Ω) → 0 as n→∞. Hence ∫

Ω

|∇u−∇φ|2dx→ 0

and ∫
Ω

|u− φn|2dx→ 0

as n→∞. Hence∫
Ω

|∇u|2dx = lim
n→∞

∫
|
∇φn|2dx ≥

( π
D

)2
∫

lim
n→∞

∫
Ω

|φn(x)|2dx =
( π
D

)2
∫

Ω

|u(x)|2dx .

Further∫
Ω

|∇u|2dx ≤ ‖u‖2
H1(Ω) =

∫
Ω

|u(x)|2dx+

∫
Ω

|∇u|2dx ≤

((
D

π

)2

+ 1

)∫
Ω

|∇u|2dx

and hence the norms are equivalent. The final statement is immediate. �

1.3. Existence of a weak solution.

Theorem 1.6. There exists a unique function u ∈ H1
0 (Ω) that satisfies∫

Ω

fvdx =

∫
Ω

∇u · ∇vdx

for all v ∈ H1
0 (Ω).

Proof. This will fall out from the Riesz representation theorem. Consider the linear functional

v →
∫

Ω

fvdx

and note that it is bounded on H1
0 (Ω) since

|
∫

Ω

fvdx| ≤ (

∫
Ω

|f |2dx)1/2(

∫
Ω

|v|2dx)1/2
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and since v ∈ H1(Ω) we have that

(

∫
Ω

|v|2dx)1/2 ≤ π

D
(

∫
Ω

|∇v|2dx)1/2 .

By the Riesz representation theorem there exists a unique u ∈ H1
0 (Ω) so that∫

Ω

fvdx =

∫
Ω

∇u · ∇vdx

which proves the existence of the weak solution. �

Now the hard work starts. It would be nice to be able to integrate by parts and to obtain∫
Ω

[−∆u− f ]vdx = 0

for all v ∈ H1
0 (Ω). At least we could conclude that −∆u = f pointwise almost everywhere in

Ω Note, however, that the ‘solution’ u is in H1
0 (Ω) only and we have no clue in what sense

one should interpret the second derivative of u.
It is also interesting that at this stage one has only (3) to work with and this leads to the

theory of elliptic regularity which was developped around 1950.
First, in the same way we introduced H1(Ω), one introduces the higher Sobolev spaces

Hk(Ω). Then one proves that a function that is in a high enough Soboleve space Hk(Ω) is in
fact continuously differentiable. In particular a function that is in Hk(Ω) for all k is C∞ in
the interior. One can also prove that a function that is in Hk(Ω) for all k, is smooth on the
boundary provided that the boundary ∂Ω itself is smooth. This kind of analysis has nothing
to do with the PDE per se.

In a first step one proves that the weak solution u is in H2(U) where is an open subset of Ω
whose closure is compact. If f ∈ Hk(Ω) one can actually prove that u ∈ Hk+2(U). This step
is called interior regularity. The way to do this is by carefully chosen test functions.

The next problem is the boundary. One would like to conclude that the function u vanishes
on the boundary but this is tricky since any function in a Sobolev space is defined only almost
everywhere and since the boundary has measure zero one has to carefully define what one
means by ‘boundary’ value. This kind of theorems are known as trace theorems. Now, if
the boundary is smooth one proceeds to prove higher regularity of u which, assuming that f
and ∂Ω are smooth, that u ∈ C∞(Ω) and the equation (1) holds in the usual sense.


