
1. The spectraltheorem for self adjoint operators

Again, we follow the book of R. Zimmer, Essential results of functional analysis
almost verbatim.

The concept of a Banach algebra does not make any mantion of adjoint operators. This is
an additional structure whch has to be defined when dealing with this abstract setting. The
relevant notion is the one of a C∗ algebra.

Definition 1.1. A C∗-algebra is a Banach algebra A with the operation ∗ : A → A sending
x to x∗. This operation has to satisfy the following conditions.

a) x∗∗ = x
b) (cx)∗ = cx∗ for all x ∈ A and all c ∈ C.
c) (xy)∗ = y∗x∗ for all x, y ∈ A
d) ‖x∗x‖ = ‖x‖2
e) If A has an identity I, then I∗ = I.

Note that the statement about the idendity follows from c) and a). First we note that the
identity is unique. Now from c) we have that x = (x∗I)∗ = I∗x and x = (Ix∗)∗ = xI∗ for all
x ∈ B, hence I∗ = I. (I tank Alex for this remark).

Examples:
a) The standard example of such an algebra is, of course, given by bounded operators on

a Hilbert space. All the properties except for d) are obvious. To see d) note that for any
bounded operator T we have that

‖T ∗T‖ = sup
‖f‖=‖g‖=1

〈f, T ∗Tg〉 = sup
‖f‖=1

〈f, T ∗Tf〉 = sup
‖f‖=1

‖Tf‖2 = ‖T‖2 .

(Why does the second equality hold?)
b) A simple example is furnished by the set of continuous functions on a compact set S.

The spacce C(S) is defined as the set of continuous, complex valued functions. For the norm
we take

‖f‖ = max
x∈S
|f(x)|

and multiplication is defined as
(fg)(x) = f(x)g(x) .

The space C(S) is a Banach space because C(S) is closed under uniform convergence and
hence a Banach algebra. If we define

f ∗(x) = f(x)

C(S) satisfies all the properties of a C∗ algebra, in fact it is a commutative C∗ algebra. We
may add the function 1 and get a C∗ algebra with identity. The properties are all very easy
to verify.

c) Let A be a bounded operator on a Hilbert space. If p(z) is a polynomial, then we may
consider p(A) and we see that the set

PA := {p(A) : p(z) a polynomial}
is an algebra. PA is not closed but since PA ⊂ L(H) one can consider the closure PA which
is now a Banach algebra. It is not a C∗ algebra since the operator A∗ /∈ PA. If, however,
A = A∗ then we can PA is a C∗ algebra, since

p(A)∗ = p(A)
1
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where p(z) is the complex conjugate polynomial, i.e., the polynomial with the complex con-
jugate coefficients of p(z). In this case PA is a commutative C∗ algebra. It is a sub-algebra of
L(H).

The first part of proving the spectral theorem for self adjoint operators consists in identifying
the C∗ algebra PA as the space of continuous functions on σ(A).

The relevant notion here is the one of an isomorphism between Banach algebras and, more
specifically, C∗ algebras.

Definition 1.2. If B1 and B2 are two Banach algebras then we call a map M : B1 → B2 an
isomorphism if the following holds.

a) M is linear.
b) M is an isometry, i.e., ‖M(x)‖2 = ‖x‖1, all x ∈ B1.
c) M is invertible on B1.
The properties a) - c) turn M into an isomorphism of Banach spaces. The next property

turns M into an isomorphism of Banach algebras.
d) For all x, y ∈ B1, M(xy) = M(x)M(y).
If A1,A2 are C∗ algebras, then M : A1 → A2 is an C∗ isomorphism if it is an isomorphism

between Banach algebras and in addition

M(x)∗ = M(x∗)

for all x ∈ A1. If A1 nad A2 are C∗ algebras with identity, then we alsy require M(I1) = I2.

In what follows A is a bounded self adjoint operator. The first part for proving the spectral
theorem consists in establishing a C∗ isomorphism between PA and the space of continuous
functions on the spectrum of A.

Theorem 1.3. There exists a unique C∗ algebra isomorphism Φ between C(σ(A)) the space
of continuous functions on the spectrum of A, and PA, the closure of the set

{p(A) : p(z) a polynomial}

in L(H) with

Φ(p) = p(A)

where p is a polynomial considered as a function on σ(A).

Thus, from an algebraic perspective there is no distinction between the algebra PA and the
algebra C(σ(A)). Of course, their actual representation is very different. One is an algebra of
operators on a Hilbert space and the other continuous functions on a compact space.

Proof. The proof is relatively easy. Define a map Ψ : C[z]→ PA by

Ψ(p) = p(A) .

Here C[z] denotes the space pf all polynomials in the variable z. It is obviously an algebra
homeomorphism and

p(A) = p(A)∗ .

Suppose that p ∈ C[z] vanishes identically on σ(A). We now from Theorem 1.6 in the previous
section that σ(p(A)) = p(σ(A)) and hence σ(p(A)) = {0}. This implies that the spectral
radius of p(A), r(p(A)) = 0 and hence by Corollary 1.12 in the previous section, we have that
‖p(A)‖ = 0 and p(A) is the zero operator. Thus, the space of all polynomials that vanish on
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σ(A) forms the kernel of Ψ, KerΨ. If π : C[z]→ C[z]/KerΨ denotes the canonical projection,
we know that there exists a unique Φ : C[z]/KerΨ→ PA such that

Ψ = Φ ◦ π .
We denote the space

C[z]/KerΨ = Pσ(A) .

Any two polynomials in Pσ(A) are equivalent if their difference is a polynomial that vanishes
on σ(A). The map Φ is obviously a homomorphism. Further, since

sup{|p(z)| : z ∈ σ(A)} = r(p(A)) = ‖p(A)‖
Φ is an isometry into PA. By the Stone-Weierstrass Theorem, the set Pσ(A) is dense in the
sup norm in C(σ(A)) and Φ extends uniquely to an isometric homomorphism

Φ : C(σ(A))→ PA .
Since the set of operators of the form p(A) is dense in PA by definition, the map Φ is an
isomorphism.

�

So far the underlying Hilbert space was not part of our considerations.

Definition 1.4. Let A be a bounded operator on a Hilbert space H. A vector f ∈ H is a
cyclic vector for A if the span of the vectors {Anf}∞n=0 is dense in H. Equivalently, f is
cyclic if the smallest subspace of H which contains f and is invariant under A is H. Quite
generally we can say that if B ⊂ L(H) is a subalgebra, we say that f is a B - cyclic vector for
B if the set {Cf : C ∈ B} is dense in H.

Note that not every vector is a cyclic vector. E.g., take a self adjoint n×n matrix A. Then
an eigenvector is not a cyclic vector for the the whole space. It is of course a cyclic vector
for the one dimensional eigenspace. To get a better feeling for this notion we shall argue that
any n × n matrix A with distinct eigenvalues has a cyclic vector. Since the eigenvalues are
distinct there exists a basis of eigenvectors. Thus, it is sufficient to find a cyclic vector for a
diagonal matrix D with distinct diagonal elements λ1, . . . , λn. Pick any vector x with none
of its entries zero. If this vector is not cyclic, the vectors x,Dx, . . . , Dn−1x must be linearly
dependent, i.e.,

p(D)x = 0

where

p(z) =
n−1∑
k=0

ckz
k .

Factoring this polynomial yields p(z) = Πn−1
j=1 (z − µj) so that

Πn−1
j=1 (D − µjI)x = 0 .

Since none of the entries of x are zero we find that

Πn−1
j=1 (λk − µj) = 0 , for k = 1, 2, . . . , n ,

which means that we have n distinct roots for a polynomial of degree n− 1 which cannot be.

Lemma 1.5. Let B ⊂ L(H) be a subalgebra with the property that if C ∈ B then C∗ ∈ B.
Then H is the orthogonal sum of subspaces Hi each of which is invariant under B and each
possessing an B cyclic vector.
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Proof. Consider the set of all subspaces of the form

V =
⊕∑
Vi

where for each i, Vi is an invariant subspace of B and possesses a B-cyclic vector. We give
this set a partial ordering by saying that V > W if {Wj : j ∈ J} ⊂ {Vi : i ∈ I}. This set of

subspaces is not empty since we can pick any vector f and consider {Bf} which is an invariant
subspace which possesses obviously f as a B-cyclic vector. Now consider a chain Vα, α ∈ I
where I is an index set. To be a chain means that if α1, α2 ∈ I and

Vα1 =
⊕∑

i∈Iα1

Vα1,i

Vα2 =
⊕∑

i∈Iα2

Vα2,i

we have that {Vα1,i : i ∈ Iα1} ⊂ {Vα2,i : i ∈ Iα2} or {Vα2,i : i ∈ Iα2} ⊂ {Vα1,i : i ∈ Iα1}. Such
a chain has an upper bound, just take ∪α∈I{Vα,i : i ∈ Iα}. By Zorn’s lemma there exists a
maximal element which we denote as

V =
⊕∑
Vi .

We show that V = H. Pick any f ⊥ V . For any C ∈ B and g ∈ V we have that

〈Cf, g〉 = 〈f, C∗g〉

and since C∗ ∈ B we have that C∗g ∈ V and hence Cf ⊥ V . Thus the space W = {Bf} is
an invariant subsapce and f is a B - cyclic vector in this space moreover it is rothogonal to V
and

V ⊕W > V

which contradicts the maximality of V . Hence V = H. �

This Lemma reduces to the problem of proving the spectral theorem for a self adjoint
operator with a cyclic vector. We shall need the isomorphism constructed in Theorem 1.3 .

Theorem 1.6. Let A be a commutative C∗ subalgebra of L(H) with I ∈ A and let f be an A
- cyclic vector in H. Assume that there exist an isomorphism Φ : A → C(X) where X is a
compact subset of C. There exists a measure µ on X and a unitary operator U : L2(X.µ)→ H
so that for all g ∈ L2(X,µ)

U−1AUg = Φ(A)g ,

for every A ∈ A.

Proof. Let f ∈ H, ‖f‖ = 1 be an A-cyclic vector and let p ∈ C(X). (Note that p is a
continuous function and not just a polynomial.) Consider the operator Φ−1(p) ∈ A and
consider the functional

`(p) = 〈Φ−1(p)f, f〉 .
The functional µ : C(X)→ C is linear and

|`(p)| ≤ ‖Φ−1(p)‖ = ‖p‖



5

where we recall that

‖p‖ = max
X
|p(z)|

and that Φ is an isometry. Hence ` is a bounded linear function on C(X) with ‖`‖ ≤ 1. Since
Φ−1(1) = I we have In fact `(1) = 〈f, f〉 = 1 and hence ‖`‖ = 1. The functional ` is also a
positive functional. In fact if p ≥ 0 we can write p = qq and find

`(p) = 〈Φ−1(qq)f, f〉 = 〈Φ−1(q)Φ−1(q)f, f〉

and since Φ(q) = Φ−1∗(q) we have that

`(p) = 〈Φ−1(q)f,Φ−1(q)f〉 ≥ 0 .

By the Riesz representation theorem, there exists a measure µ in X such that

`(p) =

∫
X

p(z)µ(dz) .

Since

1 = `(1) =

∫
X

µ(dz)

this measure µ is in fact a probability measure. Thus,

〈Φ−1(p)f, f〉 =

∫
p(z)µ(dz) .

Now, we proceed in a strightforward fashion. Define the linear operator

U : C(X)→ H

by setting

Up = Φ−1(p)f ,

and compute

〈Up, Up〉 = 〈Φ−1(p)f,Φ−1(p)f〉 = 〈Φ−1∗(p)Φ−1(p)f, f〉

= 〈Φ−1(pp)f, f〉 =

∫
X

|p(z)|2µ(dz) .

Hence if we consider C(X) as a subspace of L2(X,µ) we find that U is an isometry. Further
the set of all vectors of the form Up, p ∈ C(X) is the same as the set of all vector of the form
Af , A ∈ A. Hence the range of U is dense in H and hence U extends uniquely to a unitary
isomorphism to all of L2(X,µ). For p, g ∈ C(X)

U−1Φ−1(p)Ug = U−1Φ−1(p)Φ−1(g)f = U−1Φ−1(pg)f = Mpg ,

where Mp is the operator by multiplication with p. In other words, if A ∈ A is an operator,
we can write A = Φ−1(p), i.e., p = Φ(A) ∈ C(X), and hence the operator A is unitarily
equivalent to multiplication by Φ(A) on L2(X,µ). �

We can combine Lemma 1.5 and Theorem 1.6 and prove

Corollary 1.7. Let A be a self-adjoint operator on a Hilbert space H. Then A is unitarily
equivalent to a multiplication operator.
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Proof. By Lemma 1.5
H = ⊕i∈IHi

where I is some index set and Hi is an invariant subspace of A which contains a cyclic vector.
Denote by Ai the restriction of the operator A toHi. By Theorem 1.6 there exists a probability
measure µi and a unitary

Ui : L2(σ(Ai), µi)→ Hi

such that U−1i AiUi is a multiplication operator Mfi . Now we consider the space

S = ⊕i∈IL2(σ(Ai), µi)

and define
V = ⊕i∈IUi : S → H .

Now
V −1AV = ⊕i∈IU−1i AiUi = ⊕i∈IMfi .

�


