Some formulas for Chapter I3

Let $r(t)$ be the position (or a parameterization of a curve)
$\ln [31]:=$ Clear[t, \mathbf{v}, \mathbf{a}, UnitTangent, UnitNormal, \mathcal{k}, speed]
$\ln [32]:=\mathbf{r}=\left\{\mathbf{t}, \mathbf{t}^{\wedge} \mathbf{2}, \mathbf{t}^{\wedge} \mathbf{3}\right\}$
$O u t[32]=\left\{t, t^{2}, t^{3}\right\}$
The velocity is $d r / d t$, and the acceleration is $d^{2} r / d t^{2}=d v / d t$
$\ln [33]:=\mathbf{V}=\mathbf{D}[\mathbf{r}, \mathbf{t}]$
Out[33]=\{1,2t,3t2\}
$\ln [34]:=\mathbf{a}=\mathbf{D}[\mathbf{v}, \mathbf{t}]$
$O u t[34]=\{0,2,6 t\}$
Note that there are simplifications in the above, mostly from $\sin ^{\wedge} 2+\cos ^{\wedge} 2=1$
The speed is the length of the velocity, and the (arc) length is the integral of the speed :

```
        speed = ds/st = || v ||= = \sqrt{}{v\cdotv}
```

 (arc) length \(=\mathbf{s}(t)=\int_{0}^{t}| | v(\tau)| | d \tau\)
 - assuming the curve starts at \(t=0\)
 In[35]:= speed = Simplify[Sqrt[v.v]]
 Out[35]= $\sqrt{1+4 t^{2}+9 t^{4}}$
arclength $=\int_{0}^{t} \sqrt{1+4 t^{2}+9 t^{4}} d \tau$
The unit tangent is the unit vector in the dirrection of the velocity
$\mathrm{T}=\mathrm{v} /\|\mathrm{v}\|=\mathrm{v} /$ speed $=\mathrm{v} /(\mathrm{ds} / \mathrm{dt})$
In[36]:= UnitTangent = Simplify[v/speed]
Out[36]= $\left\{\frac{1}{\sqrt{1+4 t^{2}+9 t^{4}}}, \frac{2 t}{\sqrt{1+4 t^{2}+9 t^{4}}}, \frac{3 t^{2}}{\sqrt{1+4 t^{2}+9 t^{4}}}\right\}$
The unit normal N is the direction of $\mathrm{dT} / \mathrm{ds}$, and the curvature κ is its length.
So dT/ds $=\kappa \mathrm{N}$.
N and κ are almost never computed this way, but rather are computed via the chain rule:
$\mathrm{dT} / \mathrm{ds}=(\mathrm{dT} / \mathrm{dt}) /(\mathrm{ds} / \mathrm{st})=(\mathrm{dT} / \mathrm{dt}) /$ speed.
Giving:
$\mathrm{N}=(\mathrm{dT} / \mathrm{dt}) / \| \mathrm{dT} / \mathrm{dt}| |$
and
$\kappa=$ || dT/dt || / speed
Alternatively,
$\kappa=\| \vee \times a| | /$ speed 3
(this comes from writing the acceleration in terms of the tangential and normal components)

```
ln[[7]]:= dTdt = Simplify[D[UnitTangent, t]]
Out[37]={-\frac{2t(2+9\mp@subsup{t}{}{2})}{(1+4\mp@subsup{t}{}{2}+9\mp@subsup{t}{}{4}\mp@subsup{)}{}{3/2}},\frac{2-18\mp@subsup{t}{}{4}}{(1+4\mp@subsup{t}{}{2}+9\mp@subsup{t}{}{4}\mp@subsup{)}{}{3/2}},\frac{6t(1+2\mp@subsup{t}{}{2})}{(1+4\mp@subsup{t}{}{2}+9\mp@subsup{t}{}{4}\mp@subsup{)}{}{3/2}}}
ln[52]:= ? Assuming
In[53]:= UnitNormal = Assuming[t \in Reals, Simplify[dTdt/Sqrt[dTdt . dTdt] ]]
Out[53]={-- 
    \frac{1-9t4}{\sqrt{}{(1+4\mp@subsup{t}{}{2}+9\mp@subsup{t}{}{4})(1+9\mp@subsup{t}{}{2}+9\mp@subsup{t}{}{4})}},\frac{3(t+2\mp@subsup{t}{}{3})}{\sqrt{}{(1+4\mp@subsup{t}{}{2}+9\mp@subsup{t}{}{4})(1+9\mp@subsup{t}{}{2}+9\mp@subsup{t}{}{4})}}}
In[54]:= K = Assuming[t \in Reals, Simplify[Sqrt[dTdt . dTdt] / speed]]
Out[54]=2}\sqrt{}{\frac{1+9\mp@subsup{t}{}{2}+9\mp@subsup{t}{}{4}}{(1+4\mp@subsup{t}{}{2}+9\mp@subsup{t}{}{4}\mp@subsup{)}{}{3}}
ln[40]:= VCrossA = Cross[v, a]
Out[40]={6 ' 2, -6t, 2}
    ln[4]]:= Simplify[Sqrt[VCrossA. VCrossA] / speed^3]
Ou[[4]]=}=\frac{2\sqrt{}{1+9\mp@subsup{t}{}{2}+9\mp@subsup{t}{}{4}}}{(1+4\mp@subsup{t}{}{2}+9\mp@subsup{t}{}{4}\mp@subsup{)}{}{3/2}
```

The acceleration can be written in terms of the unit tangent and the unit normal, using the tangential component a_{T} and the normal component a_{N} :

$$
\mathrm{a}=\mathrm{a}_{T} \mathrm{~T}+a_{N} \mathrm{~N}
$$

$$
a_{T}=\frac{d^{2} s}{d t^{2}}
$$

$$
a_{N}=\kappa\left(\frac{d s}{d t}\right)^{2}=\sqrt{(\|a\|)^{2}-a_{T}^{2}}=\|v \times a\| / \text { speed }
$$

$$
\ln [42]:=\mathbf{a T}=\mathbf{D}[\text { speed, } \mathbf{t}]
$$

$$
\text { Out[42]=} \frac{8 t+36 t^{3}}{2 \sqrt{1+4 t^{2}+9 t^{4}}}
$$

$\ln [43]:=\mathbf{a N}=\operatorname{Simplify}\left[\operatorname{Sqrt}\left[(\mathbf{a} \cdot \mathbf{a})-\mathbf{a T} \mathbf{N}^{\text {2 }}\right]\right]$
Out[43]= $2 \sqrt{\frac{1+9 t^{2}+9 t^{4}}{1+4 t^{2}+9 t^{4}}}$
$\ln [44]$: $=$ aN $=$ Simplify[Sqrt[VCrossA \cdot VCrossA] / speed]
Out[44]=$=\frac{2 \sqrt{1+9 t^{2}+9 t^{4}}}{\sqrt{1+4 t^{2}+9 t^{4}}}$
The Binormal is $T^{*} N$, and the torsion is defined by $\tau=-\mathrm{N} \cdot \mathrm{dB} / \mathrm{ds}$
$=-\mathrm{N} \cdot(\mathrm{dB} / \mathrm{dt}) /$ speed .

There are other ways to compute the torsion, which can, for instance be found on mathworld.
$\ln [55]$]= UnitBinormal = Assuming[t \in Reals, Simplify[Cross[UnitTangent, UnitNormal]]]
Out[[5]] $=\left\{\frac{3 t^{2}}{\sqrt{1+9 t^{2}+9 t^{4}}},-\frac{3 t}{\sqrt{1+9 t^{2}+9 t^{4}}}, \frac{1}{\sqrt{1+9 t^{2}+9 t^{4}}}\right\}$
$\ln [50]]=\tau=-$ Simplify[UnitNormal . D[UnitBinormal, t]/speed]
Out[50]= $\frac{3}{1+9 t^{2}+9 t^{4}}$

