1. Prep-Final A

Problem 1: Find the speed, the tangential acceleration and the normal acceleration for the motion

$$
\vec{r}(t)=\left(t, t^{2}, t^{2}\right) .
$$

Compute also the curvature of the corresponding curve as a function of t.

Problem 2: Find the moment of inertia with respect to the x axis of a thin shell of mass δ that is in the first quadrant of the $x y$ plane and bounded by the curve $r^{2}=\sin 2 \theta$.

Problem 3: Compute the center of mass of a thin shell that is formed by the cone $(z-2)^{2}=$ $x^{2}+y^{2}, 0 \leq z \leq 2$.

Problem 4: Compute the line integral of the vector field

$$
\vec{F}=\left(x y z+1, x^{2} z, x^{2} y\right) e^{x y z}
$$

along the curve given in parametrized form by

$$
\vec{r}(t)=(\cos t, \sin t, t), 0 \leq t \leq \pi .
$$

Problem 5: Use the divergence theorem to compute the outward flux of the vector field

$$
\vec{F}=\left(x^{2}, y^{2}, z^{2}\right)
$$

through the cylindrical can that is bounded on the side by the cylinder $x^{2}+y^{2}=4$, bounded above by $z=1$ and below by $z=0$.

