1. Prep-Final A

Problem 1: Find the speed, the tangential acceleration and the normal acceleration for the motion

$$
\vec{r}(t)=\left(t, t^{2}, t^{2}\right) .
$$

Compute also the curvature of the corresponding curve as a function of t.

The velocity, resp. accelaration is

$$
\vec{v}(t)=(1,2 t, 2 t), \vec{a}=(0,2,2),
$$

and

$$
|\vec{v}|
$$

is the speed. The tangential acceleration is

$$
a_{T}=\frac{d}{d t}|\vec{v}(t)|=\frac{d}{d t} \sqrt{1+8 t^{2}}=\frac{8 t}{\sqrt{1+8 t^{2}}}
$$

The normal acceleration is

$$
a_{N}=\sqrt{|\vec{a}|^{2}-a_{T}^{2}}=\sqrt{8-\frac{64 t^{2}}{1+8 t^{2}}}=\frac{\sqrt{8}}{\sqrt{1+8 t^{2}}}
$$

The curvature can be found using the formula

$$
\kappa(t)=\frac{|\vec{a} \times \vec{v}|}{|\vec{v}|^{3}}=\frac{\sqrt{8}}{\left(1+8 t^{2}\right)^{3 / 2}}
$$

Here are some explanations: The tangential and normal acceleration are defined by

$$
\vec{a}=a_{T} \vec{T}+a_{N} \vec{N}
$$

where

$$
\vec{T}=\frac{\vec{v}}{|\vec{v}|}, \vec{N}=\frac{d T}{d s}=\frac{d T}{d t} \frac{d t}{d s}=\frac{\frac{d T}{d t}}{|\vec{v}|}
$$

and s is the length parametrization. Now compute:

$$
\vec{a}=\frac{d}{d t} \vec{v}=\frac{d}{d t}\left(\vec{T} \frac{d s}{d t}\right)=\frac{d^{2} s}{d t^{2}} \vec{T}+\frac{d \vec{T}}{d s}\left(\frac{d s}{d t}\right)^{2}
$$

so that

$$
a_{T}=\frac{d^{2} s}{d t^{2}}=\frac{d|\vec{v}|}{d t}
$$

and

$$
a_{N}=\kappa\left(\frac{d s}{d t}\right)^{2}
$$

recalling that the curvature is given by

$$
\kappa=\left|\frac{d \vec{T}}{d s}\right|
$$

From this it follows that

$$
\kappa=\frac{|\vec{a} \times \vec{v}|}{\frac{|\vec{v}|^{3}}{1} . . . ~ . ~}
$$

The formula

$$
\vec{a}=\frac{d^{2} s}{d t^{2}} \vec{T}+\kappa\left(\frac{d s}{d t}\right)^{2} \vec{N}
$$

is useful and intuitive.

Problem 2: Find the moment of inertia with respect to the x axis of a thin shell of mass δ that is in the first quadrant of the $x y$ plane and bounded by the curve $r^{2}=\sin 2 \theta$.

The moment of inertia with respect to the x axis is

$$
\delta \int_{\text {Region }} y^{2} d x d y
$$

It is reasonable to work this integral in polar coordinates. Note that $\sin 2 \theta>0$ only if $0 \leq \theta \leq \pi / 2$ and $\pi \leq \theta \leq 3 \pi / 2$. Being in the first quadrant requires $0 \leq \theta \leq \pi / 2$. The moment of inertia with respect to the x axis is now the integral

$$
\delta \int_{0}^{\pi / 2} \int_{0}^{\sqrt{\sin 2 \theta}}(r \sin \theta)^{2} r d r d \theta
$$

The distance of the point (x, y) to the x axis is y^{2}. Integrating with respect to r yields

$$
\begin{aligned}
& \frac{\delta}{4} \int_{0}^{\pi / 2}(\sin 2 \theta)^{2}(\sin \theta)^{2} d \theta=\delta \int_{0}^{\pi / 2}(\sin \theta)^{4}(\cos \theta)^{2} d \theta . \\
= & \delta \int_{0}^{\pi / 2}(\sin \theta)^{4} d \theta-\delta \int_{0}^{\pi / 2}(\sin \theta)^{6} d \theta=\delta \frac{3 \pi}{2^{4}}-\delta \frac{5 \pi}{2^{5}}=\delta \frac{\pi}{2^{5}} .
\end{aligned}
$$

Problem 3: Compute the center of mass of a thin shell that is formed by the cone $(z-2)^{2}=$ $x^{2}+y^{2}, 0 \leq z \leq 2$.

The following solves the wrong problem, namely for the solid cone.

The tip of the cone is at $z=2$ and the base is a disk of radius 2 . We use cylindrical coordinates. By symmetry $x_{C M}=y_{C M}=0$. Now

$$
z_{C M}=\frac{\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{2-r} z d z r d r d \theta}{\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{2-r} d z r d r d \theta}
$$

The numerator is

$$
\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{2}(2-r)^{2} r d r d \theta=\pi \int_{0}^{2}(2-r)^{2} r d r=\frac{4 \pi}{3}
$$

and the denominator is

$$
\int_{0}^{2 \pi} \int_{0}^{2}(2-r) r d r d \theta=2 \pi \int_{0}^{2}(2-r) r d r=\frac{8 \pi}{3}
$$

so that

$$
z_{C M}=\frac{1}{2} .
$$

Now the solution for the problem as posed:

Again, we have that $x_{C M}=y_{C M}=0$, as before. The z coordinate is

$$
z_{C M}=\frac{\int_{\text {Surface }} z d \sigma}{\int_{\text {Surface }} d \sigma}
$$

the density δ cancels. We have to parametrize the cone, and we use conveniently cylindrical coordinates,

$$
\vec{r}(\theta, r)=(r \cos \theta, r \sin \theta, 2-r)
$$

noting that on the cone $z=2-r$. The tangent vectors are given by

$$
\vec{r}_{r}=(\cos \theta, \sin \theta,-1)
$$

and

$$
\vec{r}_{\theta}=(-r \sin \theta, r \cos \theta, 0) .
$$

The surface element is

$$
d \sigma=\left|\vec{r}_{r} \times \vec{r}_{\theta}\right| d r d \theta=|(r \cos \theta, r \sin \theta, r)| d r d \theta=\sqrt{2} r d r d \theta .
$$

Now we integrate:

$$
\begin{gathered}
\int_{\text {Surface }} d \sigma=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{2} r d r d \theta=4 \pi \sqrt{2} . \\
\int_{\text {Surface }} z d \sigma=\int_{0}^{2 \pi} \int_{0}^{2}(2-r) \sqrt{2} r d r d \theta=2 \pi \sqrt{2} \int_{0}^{2}(2-r) r d r=\frac{8 \pi}{3} \sqrt{2} .
\end{gathered}
$$

Hence,

$$
z_{C M}=\frac{2}{3}
$$

Note that the Center of Mass is higher for the shell than for the solid, which is reasonable.

Problem 4: Compute the line integral of the vector field

$$
\vec{F}=\left(x y z+1, x^{2} z, x^{2} y\right) e^{x y z}
$$

along the curve given in parametrized form by

$$
\vec{r}(t)=(\cos t, \sin t, t), 0 \leq t \leq \pi .
$$

The line integral looks complicated and it is advisable to use Stokes's theorem. Computing the curl of \vec{F} yields $(0,0,0)$ and hence, by Stokes's theorem the line integral depends only on the end points. The straight line that connects these two points is

$$
\vec{r}(t)=(1-t)(1,0,0)+t(-1,0, \pi)=(1-2 t, 0, t \pi), 0 \leq t \leq 1
$$

We compute

$$
\vec{F} \cdot \vec{r}^{\prime}=\left(1,(1-2 t)^{2} t \pi, 0\right) \cdot(-2,0, \pi)=-2
$$

and integrating this from 0 to 1 yields

$$
-2
$$

With a little bit of guesswork one finds that

$$
\vec{F}=\nabla f, f=x e^{x y z}
$$

and

$$
f(-1,0, \pi)-f(1,0,0)=-1-1=-2 .
$$

Problem 5: Use the divergence theorem to compute the outward flux of the vector field

$$
\vec{F}=\left(x^{2}, y^{2}, z^{2}\right)
$$

through the cylindrical can that is bounded on the side by the cylinder $x^{2}+y^{2}=4$, bounded above by $z=1$ and below by $z=0$.

Again, we invoke an integral theorem, but this time the divergence theorem. One computes easily

$$
\operatorname{div} \vec{F}=2(x+y+z)
$$

and we have to integrate this over the cylinder. Using cylindrical coordinates

$$
2 \int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{1}[r(\cos \theta+\sin \theta)+z] d z r d r d \theta=4 \pi .
$$

One can try to compute the flux directly. For the flux through the top one has to integrate

$$
\left(x^{2}, y^{2}, 1\right) \cdot(0,0,1)
$$

over the disk of radius 2 , which yields 4π. The bottom disk is particularly easy since the normal vector is $(0,0,-1)$ and the vector field is $\left(x^{2}, y^{2}, 0\right)$ so that the dot product vanishes. Hence there is no contribution. It remains to compute the flux through the side. The parametrization of the cylinder is

$$
\vec{r}(\theta, z)=(2 \cos \theta, 2 \sin \theta, z)
$$

so that

$$
\vec{r}_{\theta}=(-2 \sin \theta, 2 \cos \theta, 0), \vec{r}_{z}=(0,0,1)
$$

and

$$
\vec{r}_{\theta} \times \vec{r}_{z}=2(\cos \theta, \sin \theta, 0)
$$

which obviously points outward. Now

$$
\vec{F} \cdot \vec{n} d \sigma=\left((2 \cos \theta)^{2},(2 \sin \theta)^{2}, z^{2}\right) \cdot 2(\cos \theta, \sin \theta, 0) d \theta d z=8\left((\cos \theta)^{3}+(\sin \theta)^{3}\right) d \theta d z
$$

and

$$
8 \int_{0}^{1} \int_{0}^{2 \pi}\left((\cos \theta)^{3}+(\sin \theta)^{3}\right) d \theta d z=0
$$

