
1. Prep-Final A

Problem 1: Find the speed, the tangential acceleration and the normal acceleration for the
motion

~r(t) = (t, t2, t2) .

Compute also the curvature of the corresponding curve as a function of t.

The velocity, resp. accelaration is

~v(t) = (1, 2t, 2t) , ~a = (0, 2, 2) ,

and
|~v|

is the speed. The tangential acceleration is

aT =
d

dt
|~v(t)| = d

dt

√
1 + 8t2 =

8t√
1 + 8t2

The normal acceleration is

aN =
√
|~a|2 − a2T =

√
8− 64t2

1 + 8t2
=

√
8√

1 + 8t2

The curvature can be found using the formula

κ(t) =
|~a× ~v|
|~v|3

=

√
8

(1 + 8t2)3/2
.

Here are some explanations: The tangential and normal acceleration are defined by

~a = aT ~T + aN ~N ,

where

~T =
~v

|~v|
, ~N =

dT

ds
=
dT

dt

dt

ds
=

dT
dt

|~v|
and s is the length parametrization. Now compute:

~a =
d

dt
~v =

d

dt
(~T
ds

dt
) =

d2s

dt2
~T +

d~T

ds
(
ds

dt
)2

so that

aT =
d2s

dt2
=
d|~v|
dt

,

and

aN = κ(
ds

dt
)2 ,

recalling that the curvature is given by

κ = |d
~T

ds
| .

From this it follows that

κ =
|~a× ~v|
|~v|3

.
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The formula

~a =
d2s

dt2
~T + κ

(
ds

dt

)2

~N

is useful and intuitive.

Problem 2: Find the moment of inertia with respect to the x axis of a thin shell of mass δ
that is in the first quadrant of the xy plane and bounded by the curve r2 = sin 2θ.

The moment of inertia with respect to the x axis is

δ

∫
Region

y2dxdy .

It is reasonable to work this integral in polar coordinates. Note that sin 2θ > 0 only if
0 ≤ θ ≤ π/2 and π ≤ θ ≤ 3π/2. Being in the first quadrant requires 0 ≤ θ ≤ π/2. The
moment of inertia with respect to the x axis is now the integral

δ

∫ π/2

0

∫ √sin 2θ

0

(r sin θ)2rdrdθ .

The distance of the point (x, y) to the x axis is y2. Integrating with respect to r yields

δ

4

∫ π/2

0

(sin 2θ)2(sin θ)2dθ = δ

∫ π/2

0

(sin θ)4(cos θ)2dθ .

= δ

∫ π/2

0

(sin θ)4dθ − δ
∫ π/2

0

(sin θ)6dθ = δ
3π

24
− δ5π

25
= δ

π

25
.

Problem 3: Compute the center of mass of a thin shell that is formed by the cone (z−2)2 =
x2 + y2, 0 ≤ z ≤ 2.

The following solves the wrong problem, namely for the solid cone.

The tip of the cone is at z = 2 and the base is a disk of radius 2. We use cylindrical coordinates.
By symmetry xCM = yCM = 0. Now

zCM =

∫ 2π

0

∫ 2

0

∫ 2−r
0

zdzrdrdθ∫ 2π

0

∫ 2

0

∫ 2−r
0

dzrdrdθ
.

The numerator is
1

2

∫ 2π

0

∫ 2

0

(2− r)2rdrdθ = π

∫ 2

0

(2− r)2rdr =
4π

3

and the denominator is∫ 2π

0

∫ 2

0

(2− r)rdrdθ = 2π

∫ 2

0

(2− r)rdr =
8π

3

so that

zCM =
1

2
.
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Now the solution for the problem as posed:

Again, we have that xCM = yCM = 0, as before. The z coordinate is

zCM =

∫
Surface

zdσ∫
Surface

dσ

the density δ cancels. We have to parametrize the cone, and we use conveniently cylindrical
coordinates,

~r(θ, r) = (r cos θ, r sin θ, 2− r)
noting that on the cone z = 2− r. The tangent vectors are given by

~rr = (cos θ, sin θ,−1)

and
~rθ = (−r sin θ, r cos θ, 0) .

The surface element is

dσ = |~rr × ~rθ|drdθ = |(r cos θ, r sin θ, r)|drdθ =
√

2rdrdθ .

Now we integrate: ∫
Surface

dσ =

∫ 2π

0

∫ 2

0

√
2rdrdθ = 4π

√
2 .∫

Surface

zdσ =

∫ 2π

0

∫ 2

0

(2− r)
√

2rdrdθ = 2π
√

2

∫ 2

0

(2− r)rdr =
8π

3

√
2 .

Hence,

zCM =
2

3
Note that the Center of Mass is higher for the shell than for the solid, which is reasonable.

Problem 4: Compute the line integral of the vector field

~F = (xyz + 1, x2z, x2y)exyz

along the curve given in parametrized form by

~r(t) = (cos t, sin t, t) , 0 ≤ t ≤ π .

The line integral looks complicated and it is advisable to use Stokes’s theorem. Computing
the curl of ~F yields (0, 0, 0) and hence, by Stokes’s theorem the line integral depends only on
the end points. The straight line that connects these two points is

~r(t) = (1− t)(1, 0, 0) + t(−1, 0, π) = (1− 2t, 0, tπ) , 0 ≤ t ≤ 1 .

We compute
~F · ~r′ = (1, (1− 2t)2tπ, 0) · (−2, 0, π) = −2

and integrating this from 0 to 1 yields
−2 .

With a little bit of guesswork one finds that

~F = ∇f , f = xexyz
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and
f(−1, 0, π)− f(1, 0, 0) = −1− 1 = −2 .

Problem 5: Use the divergence theorem to compute the outward flux of the vector field

~F = (x2, y2, z2)

through the cylindrical can that is bounded on the side by the cylinder x2 + y2 = 4, bounded
above by z = 1 and below by z = 0.

Again, we invoke an integral theorem, but this time the divergence theorem. One computes
easily

div ~F = 2(x+ y + z)

and we have to integrate this over the cylinder. Using cylindrical coordinates

2

∫ 2π

0

∫ 2

0

∫ 1

0

[r(cos θ + sin θ) + z]dzrdrdθ = 4π .

One can try to compute the flux directly. For the flux through the top one has to integrate

(x2, y2, 1) · (0, 0, 1)

over the disk of radius 2, which yields 4π. The bottom disk is particularly easy since the normal
vector is (0, 0,−1) and the vector field is (x2, y2, 0) so that the dot product vanishes. Hence
there is no contribution. It remains to compute the flux through the side. The parametrization
of the cylinder is

~r(θ, z) = (2 cos θ, 2 sin θ, z)

so that
~rθ = (−2 sin θ, 2 cos θ, 0) , ~rz = (0, 0, 1)

and
~rθ × ~rz = 2(cos θ, sin θ, 0)

which obviously points outward. Now

~F · ~ndσ = ((2 cos θ)2, (2 sin θ)2, z2) · 2(cos θ, sin θ, 0)dθdz = 8((cos θ)3 + (sin θ)3)dθdz

and

8

∫ 1

0

∫ 2π

0

((cos θ)3 + (sin θ)3)dθdz = 0 .


