1. Prep-Final B

Problem 1: Find the parametric equations of the line that is tangent to the curve

$$
\vec{r}(t)=\left(e^{t}, \sin t, \ln (1-t)\right)
$$

at $t=0$.

Problem 2: Find the minimum cost area of a rectangular solid with volume 64 cubic inches, given that the top and sides cost 4 cents per square inch and the bottom costs 7 cents per square inch. Just set up the equations using Lagrange multipliers, you do not have to solve them.

Problem 3: Compute the average of the function x^{4} over the sphere centered at the origin whose radius is $R>0$.

Problem 4: Compute the flux

$$
\int_{S} \vec{F} \cdot \vec{n} d \sigma
$$

where S is the hemisphere $x^{2}+y^{2}+z^{2}=4, z \geq 0, \vec{n}$ points toward the origin and

$$
\vec{F}=(x(z-y), y(x-z), z(y-x)) .
$$

Problem 5: Compute the line integral $\int_{C} \vec{F} \cdot \overrightarrow{d r}$ where C is the curve given by the intersection of the sphere $x^{2}+y^{2}+z^{2}=4$ and the plane $z=-y$, counterclockwise when viewed from above, and

$$
\vec{F}=\left(x^{2}+y, x+y, 4 y^{2}-z\right)
$$

