1. Prepquiz 1 B

Problem 1: Consider the curve in the plane given by the motion

$$
\vec{r}(t)=\left\langle t, \frac{2}{3} t^{3 / 2}\right\rangle, 0 \leq t \leq 1
$$

a) Compute the length parametrization $s(t)$, i.e., the length of the piece of the curve between $\vec{r}(0)$ and $\vec{r}(t)$.
b) Compute the length L of the curve.
c) Compute the inverse function $t(s)$ and find an expression for the curve in terms of the length parametrization. Compute the unit tangent vector and the curvature in this parametrization.

Problem 2: Find the unit tangent and curvature of the curve described by the motion

$$
\vec{r}(t)=\frac{1}{2} t^{2} \vec{i}+\frac{1}{3} t^{3} \vec{j}+t \vec{k}
$$

Problem 3: Find the normal and tangential component of the acceleration of the motion

$$
\vec{r}(t)=3 t^{2} \vec{i}+4 t^{2} \vec{j}+5 t \vec{k} .
$$

