1. Prepquiz 1B Solutions

Problem 1: Consider the curve in the plane given by the motion

$$
\vec{r}(t)=\left\langle t, \frac{2}{3} t^{3 / 2}\right\rangle, 0 \leq t \leq 1
$$

a) Compute the length parametrization $s(t)$, i.e., the length of the piece of the curve between $\vec{r}(0)$ and $\vec{r}(t)$.

$$
\vec{r}^{\prime}(t)=\left\langle 1, t^{1 / 2}\right\rangle
$$

and $\left|\vec{r}^{\prime}(t)\right|=\sqrt{1+t}$ so that

$$
s(t)=\int_{0}^{t} \sqrt{1+t} d t=\left.\frac{2}{3}(1+t)^{3 / 2}\right|_{0} ^{t}=\frac{2}{3}\left[(1+t)^{3 / 2}-1\right]
$$

b) Compute the length L of the curve.

$$
L=s(1)=\frac{2}{3}\left[2^{3 / 2}-1\right] .
$$

c) Compute the inverse function $t(s)$ and find an expression for the curve in terms of the length parametrization. Compute the unit tangent vector and the curvature in this parametrization. What happens at $s=0$?

$$
t(s)=\left[\frac{3 s}{2}+1\right]^{2 / 3}-1
$$

and

$$
\vec{u}(s)=\left\langle\left[\frac{3 s}{2}+1\right]^{2 / 3}-1, \frac{2}{3}\left[\left[\frac{3 s}{2}+1\right]^{2 / 3}-1\right]^{3 / 2}\right\rangle
$$

The unit tangent vector is $\vec{T}(s)=\vec{u}^{\prime}(s)$ and given by

$$
\vec{T}(s)=\left\langle\left[\frac{3 s}{2}+1\right]^{-1 / 3},\left[\left[\frac{3 s}{2}+1\right]^{2 / 3}-1\right]^{1 / 2}\left[\frac{3 s}{2}+1\right]^{-1 / 3}\right\rangle=\left\langle\left[\frac{3 s}{2}+1\right]^{-1 / 3},\left[1-\left[\frac{3 s}{2}+1\right]^{-2 / 3}\right]^{1 / 2}\right\rangle
$$

Further

$$
\begin{gathered}
\vec{T}^{\prime}(s)=\left\langle-\frac{1}{2}\left[\frac{3 s}{2}+1\right]^{-4 / 3}, \frac{1}{2}\left[1-\left[\frac{3 s}{2}+1\right]^{-2 / 3}\right]^{-1 / 2}\left[\frac{3 s}{2}+1\right]^{-5 / 3}\right\rangle \\
\kappa(s)=\sqrt{\frac{1}{4}\left[\frac{3 s}{2}+1\right]^{-8 / 3}+\frac{1}{4}\left[1-\left[\frac{3 s}{2}+1\right]^{-2 / 3}\right]^{-1}\left[\frac{3 s}{2}+1\right]^{-10 / 3}} \\
=\frac{1}{2} \frac{1}{\left[\frac{3 s}{2}+1\right] \sqrt{\left[\frac{3 s}{2}+1\right]^{2 / 3}-1}}
\end{gathered}
$$

Problem 2: Find the unit tangent and curvature of the curve described by the motion

$$
\begin{aligned}
\vec{r}(t) & =\frac{1}{2} t^{2} \vec{i}+\frac{1}{3} t^{3} \vec{j}+t \vec{k} \\
\vec{v}(t) & =\vec{r}^{\prime}(t)=t \vec{i}+t^{2} \vec{j}+\vec{k}
\end{aligned}
$$

so that

$$
|\vec{v}|=\sqrt{1+t^{2}+t^{4}}
$$

Now

$$
\begin{gathered}
\vec{T}(t)=\frac{\vec{v}}{|\vec{v}|}=\frac{t \vec{i}+t^{2} \vec{j}+\vec{k}}{\sqrt{1+t^{2}+t^{4}}} \\
\vec{T}^{\prime}(t)=\frac{\left\langle 1+t^{2}+t^{4}, 2 t\left(1+t^{2}+t^{4}\right), 0\right\rangle}{\left(1+t^{2}+t^{4}\right)^{3 / 2}}-\frac{\left\langle t^{2}+2 t^{4}, t^{3}+2 t^{5}, t+2 t^{3}\right\rangle}{\left(1+t^{2}+t^{4}\right)^{3 / 2}}=\frac{\left\langle 1-t^{4}, 2 t+t^{3},-t-2 t^{3}\right\rangle}{\left(1+t^{2}+t^{4}\right)^{3 / 2}} \\
\kappa(t)=\frac{\left|\vec{T}^{\prime}(t)\right|}{|\vec{v}(t)|}=\frac{\sqrt{1+5 t^{2}+6 t^{4}+5 t^{6}+t^{8}}}{\left(1+t^{2}+t^{4}\right)^{2}}=\frac{\sqrt{1+4 t^{2}+t^{4}}}{\left(1+t^{2}+t^{4}\right)^{3 / 2}}
\end{gathered}
$$

Another, and easier, way of computing the curvature would be to use the formula

$$
\frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^{3}} .
$$

We find

$$
\vec{a}=\vec{i}+2 t \vec{j}
$$

and

$$
\vec{v} \times \vec{a}=-2 t \vec{i}+\vec{j}+t^{2} \vec{k}
$$

so that

$$
|\vec{v} \times \vec{a}|=\sqrt{1+4 t^{2}+t^{4}}
$$

and once more

$$
\kappa(t)=\frac{\sqrt{1+4 t^{2}+t^{4}}}{\left(1+t^{2}+t^{4}\right)^{3 / 2}} .
$$

Problem 3: Find the normal and tangential component of the acceleration of the motion

$$
\vec{r}(t)=3 t^{2} \vec{i}+4 t^{2} \vec{j}+5 t \vec{k}
$$

Recall that

$$
\vec{a}=a_{T} \vec{T}+a_{N} \vec{N}
$$

where

$$
a_{T}=\frac{d|\vec{v}|}{d t}=\frac{d^{2} s}{d t^{2}}, a_{N}=\kappa|\vec{v}|^{2}=\kappa\left(\frac{d s}{d t}\right)^{2} .
$$

We find

$$
\vec{v}=6 t \vec{i}+8 t \vec{j}+5 \vec{k}
$$

and

$$
|\vec{v}|=\sqrt{25+100 t^{2}}=5 \sqrt{1+4 t^{2}} .
$$

From this we compute

$$
a_{T}=\frac{d^{2} s}{d t^{2}}=\frac{20 t}{\sqrt{1+4 t^{2}}}
$$

The acceleration is

$$
\vec{a}=6 \vec{i}+8 \vec{j} .
$$

so that

$$
|\vec{a}|=10
$$

and therefore

$$
a_{N}=\sqrt{\left.\vec{a}\right|^{2}-a_{T}^{2}}=\sqrt{100-\frac{400 t^{2}}{1+4 t^{2}}}=\frac{10}{\sqrt{1+4 t^{2}}}
$$

