1. Prepquiz 2 A

Problem 1: The sphere $x^2 + y^2 + z^2 = 14$ and the plane x + y - z = 0 intersect in a circle. Find the line tangent to this circle at the point (1, 2, 3).

The gradient of the function $g(x, y, z) = x^2 + y^2 + z^2$ is $\nabla g(x, y, z) = \langle 2x, 2y, 2z \rangle$, so that $\nabla g(1, 2, 3) = \langle 2, 4, 6 \rangle$.

Likewise, the gradient of the function f(x, y, z) = x + y - z is $\nabla f(x, y, z) = \langle 1, 1, -1 \rangle$ so that

$$\nabla f(1,2,3) = \langle 1,1,-1 \rangle$$
.

The plane tangent to the sphere at the point (1, 2, 3) is perpendicular to $\nabla g(1, 2, 3)$. The tangent line we are looking for is the intersection of these two planes. Hence the direction of this line is perpendicular to $\nabla g(1, 2, 3)$ and $\nabla f(1, 2, 3)$, i.e., perpendicular to both $\langle 2, 4, 6 \rangle$ and $\langle 1, 1, -1 \rangle$. it is therefore natural to compute the cross product

$$\langle 2,4,6\rangle \times \langle 1,1,-1\rangle = \langle -10,8,-2\rangle .$$

The lines must pass through the point (1, 2, 3) and therefore the tangent line is given by all points of the form

$$(1,2,3) + s\langle -10,8,-2 \rangle$$
.

Problem 2: Find all the circles of radius 1 that are tangent to the curve $\frac{x^2}{4} + y^2 = 2$ at the point (-2, 1).

Any circle of radius 1 is of the form $(x-a)^2 + (y-b)^2 = 1$. The goal is to find a, b so that the circles is tangent to the ellipse at the point (-2, 1). To be tangent at the point (-2, 1) means that the gradients of the function $f(x, y) = \frac{x^2}{4} + y^2$ and of the function $g(x, y) = (x-a)^2 + (y-b)^2$ evaluated at (-2, 1) are parallel. Since

$$abla f(x,y) = \langle \frac{x}{2}, 2y \rangle , \ \nabla g(x,y) = \langle 2(x-a), 2(y-b) \rangle$$

so that

$$\nabla f(-2,1) = \langle -1,2 \rangle , \ \nabla g(-2,1) = \langle -4-2a,2-2b \rangle .$$

That the two vectors are parallel means that

$$\langle -4 - 2a, 2 - 2b \rangle = \lambda \langle -1, 2 \rangle$$

which when written out $4 + 2a = \lambda$ and $2 - 2b = 2\lambda$. This means that

$$a = -2 + \frac{\lambda}{2}$$
, $b = 1 - \lambda$.

We also know that $(-2-a)^2 + (1-b)^2 = 1$, since the point (-2, 1) must be on the circle. So it must be that

$$1 = (-2 - a)^2 + (1 - b)^2 = \frac{5\lambda^2}{4} .$$

so that $\lambda = \pm \frac{2}{\sqrt{5}}$. Thus, there are two circles which touches the ellipse, one on the 'inside' and one on the 'outside'. They are

$$(x+2-\frac{1}{\sqrt{5}})^2 + (y-1+\frac{2}{\sqrt{5}})^2 = 1$$
$$(x+2+\frac{1}{\sqrt{5}})^2 + (y-1-\frac{2}{\sqrt{5}})^2 = 1$$

and

Problem 3: Find the distance between the curve
$$x^2 - xy + y^2 = 1$$
 and the line $x + y = 10$.
What is the point closest to the line?

The line of distance between the curve $x^2 - xy + y^2 = 1$ and the line x + y = 10 must be perpendicular to both, the curve and the line. The vector normal to the line, which is the same as the gradient of the function x + y, is $\langle 1, 1 \rangle$. Thus we have to find a point (u, v) on the curve $x^2 - xy + y^2 = 1$ where the gradient of the function $f(x, y) = x^2 - xy + y^2$ is parallel to $\langle 1, 1 \rangle$. Now

$$\nabla f(x,y) = \langle 2x - y, -x + 2y \rangle$$

and we have to solve

$$2x - y = \lambda \ , \ -x + 2y = \lambda$$

for x and y. This is easily done and we get $(x, y) = \lambda(1, 1)$. Now we have to choose λ so that the point $\lambda(1, 1)$ is on the curve, i.e., $\lambda^2 = 1$ and hence $\lambda = \pm 1$. The curve is an ellipse and one point is closest to the line whereas the other is farthest from the line. Now we compute the distance between the line x + y = 1 and the point (1, 1). The line passing through the point (1, 1) and is normal to the line x + y = 10 is given by

$$(1,1) + s\langle 1,1 \rangle$$

(Why?) and it intersects the line x + y = 10 at the point (5,5), i.e., s = 4. But the distance between the points (1,1) and (5,5) is $4\sqrt{2}$. Similarly the distance of the point (-1,-1) to the line is $6\sqrt{2}$ which is larger. Hence the distance is $4\sqrt{2}$ and the point on the ellipse that is closest to the line is (1,1).