1. Prepquiz 2 A

Problem 1: The sphere $x^{2}+y^{2}+z^{2}=14$ and the plane $x+y-z=0$ intersect in a circle. Find the line tangent to this circle at the point $(1,2,3)$.

The gradient of the function $g(x, y, z)=x^{2}+y^{2}+z^{2}$ is $\nabla g(x, y, z)=\langle 2 x, 2 y, 2 z\rangle$, so that

$$
\nabla g(1,2,3)=\langle 2,4,6\rangle
$$

Likewise, the gradient of the function $f(x, y, z)=x+y-z$ is $\nabla f(x, y, z)=\langle 1,1,-1\rangle$ so that

$$
\nabla f(1,2,3)=\langle 1,1,-1\rangle
$$

The plane tangent to the sphere at the point $(1,2,3)$ is perpendicular to $\nabla g(1,2,3)$. The tangent line we are loooking for is the intersection of these two planes. Hence the direction of this line is perpendicular to $\nabla g(1,2,3)$ and $\nabla f(1,2,3)$, i.e., perpendicular to both $\langle 2,4,6\rangle$ and $\langle 1,1,-1\rangle$. it is therfore natural to compute the cross product

$$
\langle 2,4,6\rangle \times\langle 1,1,-1\rangle=\langle-10,8,-2\rangle
$$

The lines must pass through the point $(1,2,3)$ and therefore the tangent line is given by all points of the form

$$
(1,2,3)+s\langle-10,8,-2\rangle
$$

Problem 2: Find all the circles of radius 1 that are tangent to the curve $\frac{x^{2}}{4}+y^{2}=2$ at the point ($-2,1$).

Any circle of radius 1 is of the form $(x-a)^{2}+(y-b)^{2}=1$. The goal is to find a, b so that the circles is tangent to the ellipse at the point $(-2,1)$. To be tangent at the point $(-2,1)$ means that the gradients of the function $f(x, y)=\frac{x^{2}}{4}+y^{2}$ and of the function $g(x, y)=$ $(x-a)^{2}+(y-b)^{2}$ evaluated at $(-2,1)$ are parallel. Since

$$
\nabla f(x, y)=\left\langle\frac{x}{2}, 2 y\right\rangle, \nabla g(x, y)=\langle 2(x-a), 2(y-b)\rangle
$$

so that

$$
\nabla f(-2,1)=\langle-1,2\rangle, \nabla g(-2,1)=\langle-4-2 a, 2-2 b\rangle
$$

That the two vectors are parallel means that

$$
\langle-4-2 a, 2-2 b\rangle=\lambda\langle-1,2\rangle
$$

which when written out $4+2 a=\lambda$ and $2-2 b=2 \lambda$. This means that

$$
a=-2+\frac{\lambda}{2}, b=1-\lambda .
$$

We also know that $(-2-a)^{2}+(1-b)^{2}=1$, since the point $(-2,1)$ must be on the circle. So it must be that

$$
1=(-2-a)^{2}+(1-b)^{2}=\frac{5 \lambda^{2}}{4}
$$

so that $\lambda= \pm \frac{2}{\sqrt{5}}$. Thus, there are two circles which touches the ellipse, one on the 'inside' and one on the 'outside'. They are

$$
\left(x+2-\frac{1}{\sqrt{5}}\right)^{2}+\left(y-1+\frac{2}{\sqrt{5}}\right)^{2}=1
$$

and

$$
\left(x+2+\frac{1}{\sqrt{5}}\right)^{2}+\left(y-1-\frac{2}{\sqrt{5}}\right)^{2}=1
$$

Problem 3: Find the distance between the curve $x^{2}-x y+y^{2}=1$ and the line $x+y=10$. What is the point closest to the line?

The line of distance between the curve $x^{2}-x y+y^{2}=1$ and the line $x+y=10$ must be perpendicular to both, the curve and the line. The vector normal to the line, which is the same as the gradient of the function $x+y$, is $\langle 1,1\rangle$. Thus we have to find a point (u, v) on the curve $x^{2}-x y+y^{2}=1$ where the gradient of the function $f(x, y)=x^{2}-x y+y^{2}$ is parallel to $\langle 1,1\rangle$. Now

$$
\nabla f(x, y)=\langle 2 x-y,-x+2 y\rangle
$$

and we have to solve

$$
2 x-y=\lambda,-x+2 y=\lambda
$$

for x and y. This is easily done and we get $(x, y)=\lambda(1,1)$. Now we have to choose λ so that the point $\lambda(1,1)$ is on the curve, i.e., $\lambda^{2}=1$ and hence $\lambda= \pm 1$. The curve is an ellipse and one point is closest to the line whereas the other is farthest from the line. Now we compute the distance between the line $x+y=1$ and the point $(1,1)$. The line passing through the point $(1,1)$ and is normal to the line $x+y=10$ is given by

$$
(1,1)+s\langle 1,1\rangle
$$

(Why?) and it intersects the line $x+y=10$ at the point $(5,5)$, i.e., $s=4$. But the distance between the points $(1,1)$ and $(5,5)$ is $4 \sqrt{2}$. Similarly the distance of the point $(-1,-1)$ to the line is $6 \sqrt{2}$ which is larger. Hence the distance is $4 \sqrt{2}$ and the point on the ellipse that is closest to the line is $(1,1)$.

