1. Prepquiz 3 B

Problem 1: Compute the average

$$
\frac{1}{A(R)} \int_{R}\left(x^{2}-y^{2}\right) d A
$$

where the region R is given by the circle of radius r centered at the point (a, b) and $A(R)$ denotes its area.

The area of a circle of radius r is πr^{2} no matter where the circle is located. It depends solely on the radius. Now we write

$$
x=a+u \text { and } y=b+v
$$

and note that when (x, y) runs is inside the disk centered at (a, b) then (u, v) runs inside the disk D centered at the origin and conversely. Now imagine a small rectangle inside the disk centered at (a, b) given by

$$
x_{0}-\delta \leq x \leq x_{0}+\delta \text { and } y_{0}-\varepsilon \leq y \leq y_{0}+\varepsilon
$$

Obviously the rectangle is centered at $\left(x_{0}, y_{0}\right)$ and has area $4 \delta \varepsilon$. Now in the u, v variables we have that

$$
x_{0}-a-\delta \leq u \leq x_{0}-a+\delta \text { and } y_{0}-b-\varepsilon \leq v \leq y_{0}-b+\varepsilon .
$$

which means that u, v range over a rectangle inside the disk centered at the origin and the area of this rectangle is also $4 \delta \varepsilon$. The upshot of this is that the integral

$$
\frac{1}{\pi r^{2}} \int_{R}\left(x^{2}-y^{2}\right) d x d y=\frac{1}{\pi r^{2}} \int_{D}\left((a+v)^{2}-(b+v)^{2}\right) d u d v=\frac{1}{\pi r^{2}} \int_{D}\left(a^{2}-b^{2}+2 a u-2 b v+v^{2}-u^{2}\right) d u d v
$$

Now we use polar coordinates $u=\rho \cos \theta, v=\rho \sin \theta$ and get for the last integral

$$
\frac{1}{\pi r^{2}} \int_{0}^{2 \pi}\left(\int_{0}^{r}\left(a^{2}-b^{2}+2 a \rho \cos \theta-2 b \rho \sin \theta+r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right) \rho d \rho\right) d \theta
$$

which by interchanging the order of integration equals

$$
\frac{1}{\pi r^{2}} \int_{0}^{r} \int_{0}^{2 \pi}\left(\left(a^{2}-b^{2}+2 a \rho \cos \theta-2 b \rho \sin \theta+r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right) d \theta\right) \rho d \rho=a^{2}-b^{2}
$$

Problem 2: Compute the integral

$$
\int_{R} x \sqrt{x^{2}+y^{2}} d A
$$

where R is the piece of the unit disk in the first quadrant of the $x y$ plane. Work this problem twice, once in cartesian coordinates and then again in polar coordinates.

The piece of the circle in the first quadrant is given by the equation $y=\sqrt{1-x^{2}}$ or $x=$ $\sqrt{1-y^{2}}$. Now first integrating over y keeping x fixed and then integrating over x we get

$$
\int_{0}^{1}\left(\int_{0}^{\sqrt{1-x^{2}}} x \sqrt{x^{2}+y^{2}} d y\right) d x
$$

This integral can be solved with trigonometric substitution. But the factor x in front of the root suggests that it is better to integrate first with respect to x and then with respect to y and in this way we get

$$
\int_{0}^{1}\left(\int_{0}^{\sqrt{1-y^{2}}} x \sqrt{x^{2}+y^{2}} d x\right) d y
$$

An antiderivative of $x \sqrt{x^{2}+y^{2}}$ is $\left(x^{2}+y^{2}\right)^{3 / 2} / 3$ and hence the above expression equals

$$
\left.\frac{1}{3} \int_{0}^{1}\left(x^{2}+y^{2}\right)^{3 / 2}\right|_{0} ^{\sqrt{1-y^{2}}} d y=\frac{1}{3} \int_{0}^{1}\left[\left(1-y^{2}+y^{2}\right)^{3 / 2}-\left(y^{2}\right)^{3 / 2}\right] d y
$$

which equals

$$
\frac{1}{3} \int_{0}^{1}\left[1-y^{3}\right] d y=\frac{1}{3} \frac{3}{4}=\frac{1}{4}
$$

In terms of polar coordinates we have that $0 \leq \theta \leq \pi / 2$ and $0 \leq r \leq 1$ and we have to compute

$$
\int_{0}^{\pi / 2}\left(\int_{0}^{1}\left(r^{2} \cos \theta\right) r d r\right) d \theta=\int_{0}^{\pi / 2} \cos \theta d \theta \int_{0}^{1} r^{3} d r=\frac{1}{4}
$$

Problem 3: (Taken from Grossman) Among all the ellipses

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

passing through the point $(3,5)$ find the one that has smallest area.

The area of the ellipse is $\pi a b, a>0, b>0$. We have minimize this function subject to the constraint

$$
\left(\frac{3}{a}\right)^{2}+\left(\frac{5}{b}\right)^{2}=1
$$

Applying the theory of Lagrange multiplier yields

$$
b=-\lambda \frac{3^{2}}{a^{3}} \text { and } a=-\lambda \frac{5^{2}}{b^{3}}
$$

together with the constraint. This means that

$$
\frac{b a^{3}}{3^{2}}=-\lambda=\frac{a b^{3}}{5^{2}}
$$

so that

$$
\frac{a^{2}}{3^{2}}=\frac{b^{2}}{5^{2}}
$$

Hence

$$
\begin{gathered}
\left(\frac{3}{a}\right)^{2}+\left(\frac{5}{b}\right)^{2}=2\left(\frac{3}{a}\right)^{2}=1 \\
\frac{a^{2}}{3^{2}}=\frac{b^{2}}{5^{2}}=2
\end{gathered}
$$

and

$$
a=3 \sqrt{2}, b=5 \sqrt{2} .
$$

