1. Solutions of Prepquiz 4A

Problem 1: To compute I_{x} we have to integrate the square of the distance to the x-axis over the region which means we have to compute

$$
I_{x}=\int_{0}^{a} \int_{0}^{b} \int_{0}^{c}\left(y^{2}+z^{2}\right) d z d y d x=\frac{a c b^{3}+a b c^{3}}{3}=a b c \frac{b^{2}+c^{2}}{3}=M \frac{b^{2}+c^{2}}{3}
$$

where M is the mass. Likewise

$$
I_{y}=M \frac{a^{2}+c^{2}}{3}, I_{z}=M \frac{a^{2}+b^{2}}{3}
$$

Problem 2: The cylinder in terms of cylindrical coordinates is given by $r=2 \cos \theta$ which restricts the possible values of θ to the intervals $[0, \pi / 2]$ and $[3 \pi / 2,2 \pi]$. The sphere in terms of cylindrical coordinates is given by $r^{2}+z^{2}=1$. To compute the volume of the region which is above the xy plane, inside the cylinder and below the sphere, we have to work out an integral of the type

$$
\iiint d z r d r d \theta=\iint \sqrt{1-r^{2}} r d r d \theta
$$

over the region in the xy plane which consists of the intersection of the disk of radius 1 and the disk centered at $(1,0)$. This intersection is given by all those values of r and θ so that $0 \leq r \leq 1$ and $0 \leq r \leq 2 \cos \theta$. Note that $2 \cos \theta>1$ for all $0 \leq \theta<\pi / 3$ and $5 \pi / 3<\theta \leq 2 \pi$. For these angles r ranges over the interval $[0,1]$. For the remaining angles in $[\pi / 3, \pi / 2]$ and $[3 \pi / 2,5 \pi / 3]$ we have that $2 \cos \theta \leq 1$ and hence r ranges over the interval $[0,2 \cos \theta]$.

Hence we get the following contributions

$$
\begin{aligned}
& \int_{0}^{\pi / 3} \int_{0}^{1} \sqrt{1-r^{2}} r d r d \theta+\int_{\pi / 3}^{\pi / 2} \int_{0}^{2 \cos \theta} \sqrt{1-r^{2}} r d r d \theta \\
+ & \int_{5 \pi / 3}^{2 \pi} \int_{0}^{1} \sqrt{1-r^{2}} r d r d \theta+\int_{3 \pi / 2}^{5 \pi / 3} \int_{0}^{2 \cos \theta} \sqrt{1-r^{2}} r d r d \theta .
\end{aligned}
$$

The last two integrals have the same value as the first two and hence we get

$$
2 \int_{0}^{\pi / 3} \int_{0}^{1} \sqrt{1-r^{2}} r d r d \theta+2 \int_{\pi / 3}^{\pi / 2} \int_{0}^{2 \cos \theta} \sqrt{1-r^{2}} r d r d \theta
$$

Problem 3: Choose variables $u=x+2 y$ and $v=x-y$ and note that u ranges over the interval $[1,2]$ and v over the interval $[2,4]$. We have to compute the variables x, y in terms of u and v and get

$$
y=\frac{1}{3}(u-v), x=\frac{1}{3}(u+2 v)
$$

so that the Jacobian determinant is given by

$$
\operatorname{det}\left[\begin{array}{cc}
1 / 3 & 2 / 3 \\
1 / 3 & -1 / 3
\end{array}\right]=-\frac{1}{3}
$$

The area is now given by

$$
\int_{1}^{2} \int_{2}^{4} \frac{1}{3} d v d u=\frac{2}{3}
$$

