1. Solutions for Prepquiz 4B

Problem 1: Find the area of the region in the first quadrant of the xy plane given by $1 \leq x^{2}+2 y^{2} \leq 2$ and $1 \leq x / y \leq 2$.

Set $u=x^{2}+2 y^{2}$ and $v=\frac{x}{y}$. Note that both variables, u as well as v vary between 1 and 2. The next step is to solve x, y in terms of u, v which is a bit trickier. We have that $x=y v$ and hence $u=y^{2}\left(v^{2}+2\right)$ so that

$$
y=\frac{\sqrt{u}}{\sqrt{2+v^{2}}}, x=\frac{v \sqrt{u}}{\sqrt{2+v^{2}}} .
$$

Now we compute

$$
\frac{\partial x}{\partial u}=\frac{v}{2 \sqrt{u} \sqrt{2+v^{2}}}, \frac{\partial x}{\partial v}=\frac{2 \sqrt{u}}{\left(2+v^{2}\right)^{3 / 2}}, \frac{\partial y}{\partial u}=\frac{1}{2 \sqrt{u} \sqrt{2+v^{2}}}, \frac{\partial y}{\partial v}=-\frac{\sqrt{u} v}{\left(2+v^{2}\right)^{3 / 2}} .
$$

and find

$$
\left|\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}\right|=\left|-\frac{v^{2}}{2\left(2+v^{2}\right)^{2}}-\frac{1}{\left(2+v^{2}\right)^{2}}\right|=\frac{1}{2\left(2+v^{2}\right)} .
$$

Hence we have to integrate

$$
\int_{1}^{2} \int_{1}^{2} \frac{1}{2\left(2+v^{2}\right)} d u d v=\int_{1}^{2} \frac{1}{2\left(2+v^{2}\right)} d v=\frac{1}{4} \int_{1}^{2} \frac{1}{1+v^{2} / 2} d v .
$$

Changing variables $x=v / \sqrt{2}$ we find that this integral equals

$$
\frac{\sqrt{2}}{4} \int_{1 / \sqrt{2}}^{\sqrt{2}} \frac{1}{1+x^{2}} d x=\frac{\sqrt{2}}{4}\left[\tan ^{-1}(\sqrt{2})-\tan ^{-1}(1 / \sqrt{2})\right] .
$$

Problem 2: Find the volume of the region bounded below by the xy plane, bounded above by the surface $z=3 \sqrt{1-x^{2}-y^{2}}$ and laterally by the cylinder $r=\cos \theta$.

We set up the integral in cylindrical coordinates, $x=r \cos \theta, y=r \sin \theta, z$. First we note that $\cos \theta$ has to be non-negative which means that θ can take values in the intervals $[0, \pi / 2]$ and $[3 \pi / 2,2 \pi]$. Further r must be in the interval $[0, \cos \theta]$. Hence we get

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \int_{0}^{\cos \theta} \int_{0}^{3 \sqrt{1-r^{2}}} d z r d r d \theta+\int_{3 \pi / 2}^{2 \pi} \int_{0}^{\cos \theta} \int_{0}^{3 \sqrt{1-r^{2}}} d z r d r d \theta \\
&=2 \int_{0}^{\pi / 2} \int_{0}^{\cos \theta} 3 \sqrt{1-r^{2}} r d r d \theta=\int_{0}^{\pi / 2} \int_{0}^{(\cos \theta)^{2}} 3 \sqrt{1-u} d u d \theta \\
&= \frac{2}{3} 3 \int_{0}^{\pi / 2}\left[1-\left(1-(\cos \theta)^{2}\right)^{3 / 2}\right] d \theta=2 \int_{0}^{\pi / 2}\left[1-(\sin \theta)^{3}\right] d \theta
\end{aligned}
$$

Problem 3: Find the center of mass of a body with constant mass density δ bounded below by the plane $z=1$ and above by the surface $z=4-x^{2}-y^{2}$.

Clearly, by symmetry, the x, y components of the center of mass both vanish. We have to compute two integrals, The total mass M and the the integral of the function z over the domain. It is easiest to do this integral using cylindrical coordinates. The variable z runs from 1 to $4-r^{2}$, the variable r runs over all values so that $4-r^{2} \geq 1$, i.e., $0 \leq r \leq \sqrt{3}$. The mass is given by

$$
M=\delta \int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \int_{1}^{4-r^{2}} r d z d r d \theta=\delta \int_{0}^{2 \pi} \int_{0}^{\sqrt{3}}\left(3-r^{2}\right) r d r d \theta=\delta 2 \pi \int_{0}^{3}(3-u) d u=9 \pi \delta
$$

Further

$$
\begin{gathered}
\delta \int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \int_{1}^{4-r^{2}} r z d z d r d \theta=\left.\delta \int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} r \frac{z^{2}}{2}\right|_{1} ^{4-r^{2}} d r d \theta=\delta \pi \int_{0}^{\sqrt{3}} r\left[\left(4-r^{2}\right)^{2}-1\right] d r \\
=\delta \pi \int_{0}^{3}\left[(4-u)^{2}-1\right] d u=\delta \pi\left[\frac{4^{3}-1}{3}-3\right]
\end{gathered}
$$

so that the z component of the Center of Mass is given by

$$
\frac{4^{3}-10}{27}=2
$$

