
1. Solutions for Prepquiz 4B

Problem 1: Find the area of the region in the first quadrant of the xy plane given by
1 ≤ x2 + 2y2 ≤ 2 and 1 ≤ x/y ≤ 2.

Set u = x2 + 2y2 and v = x
y
. Note that both variables, u as well as v vary between 1 and

2. The next step is to solve x, y in terms of u, v which is a bit trickier. We have that x = yv
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Problem 2: Find the volume of the region bounded below by the xy plane, bounded above
by the surface z = 3

√
1− x2 − y2 and laterally by the cylinder r = cos θ.

We set up the integral in cylindrical coordinates, x = r cos θ, y = r sin θ, z. First we note
that cos θ has to be non-negative which means that θ can take values in the intervals [0, π/2]
and [3π/2, 2π]. Further r must be in the interval [0, cos θ]. Hence we get∫ π/2
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Problem 3: Find the center of mass of a body with constant mass density δ bounded below
by the plane z = 1 and above by the surface z = 4− x2 − y2.
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Clearly, by symmetry, the x, y components of the center of mass both vanish. We have
to compute two integrals, The total mass M and the the integral of the function z over the
domain. It is easiest to do this integral using cylindrical coordinates. The variable z runs
from 1 to 4− r2, the variable r runs over all values so that 4− r2 ≥ 1, i.e., 0 ≤ r ≤
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so that the z component of the Center of Mass is given by

43 − 10

27
= 2 .


