1. Quiz 3 solutions

Problem 1(10 points): Let $f(x, y)=x y$. Find the integral of the function f over the region bounded by $y=x(x-2)$ and $y=x$.

The line $y=x$ intersects the parabola $y=x(x-2)$ at the points 0 and 3 . The curve $y=x$ bounds the region above and the curve $y=x(x-2)$ bounds it from below. Integrating first over the variable y and then over x we find for the integral

$$
\begin{aligned}
\int_{0}^{3}\left(\int_{x(x-2)}^{x} x y d y\right) d x & =\int_{0}^{3} x\left(\int_{x(x-2)}^{x} y d y\right) d x=\frac{1}{2} \int_{0}^{3} x\left(x^{2}-x^{2}(x-2)^{2}\right) d x \\
& =\left.\frac{1}{2}\left(-\frac{3}{4} x^{4}+\frac{4}{5} x^{5}-\frac{1}{6} x^{6}\right)\right|_{0} ^{3}=\frac{3^{5}}{40}
\end{aligned}
$$

Problem 2: (10 points) Set up the $\int_{R} \int x d A$ for the region in the first quadrant, bounded above by the curve $x^{2}+y^{2}=1$, and bounded below by $y=x$. Do this in cartesian coordinates (5 points) and polar coordinates (5 points).

In the domain R for fixed x the variable y ranges from x to $\sqrt{1-x^{2}}$ while the variable x ranges from 0 to $1 / \sqrt{2}$. Hence, by first integrating with respect to y and then with respect to x we get

$$
\int_{0}^{1 / \sqrt{2}}\left(\int_{x}^{\sqrt{1-x^{2}}} x d y\right) d x
$$

To set up the integral in polar coordinates we have to describe the domain in terms of r and θ. The radius r ranges from 0 to 1 whereas the angle θ ranges from $\pi / 4$ to $\pi / 2$. The function x expressed in terms of polar coordinates is given by $r \cos \theta$. Hence the integral is

$$
\int_{\pi / 4}^{\pi / 2}\left(\int_{0}^{1} r \cos \theta r d r\right) d \theta
$$

You were not asked to evaluate the integral but its value is

$$
\frac{1}{3}\left(1-\frac{1}{\sqrt{2}}\right)
$$

Problem 3: Find the point (x, y) on the curve $y^{2}(1-x)-x^{2}(x+3)=0$ where the x coordinate is minimum.

Using Lagrange multiplier with $f(x, y)=x$ and $g(x, y)=y^{2}(1-x)-x^{2}(x+3)$ the equation

$$
\nabla f=\lambda \nabla g \text { together with } g=0
$$

turns into

$$
1=\lambda\left(-y^{2}-3 x^{2}-6 x\right) \text { and } 0=2 y(1-x) \text { together with } y^{2}(1-x)-x^{2}(x+3)=0
$$

The first serves only to determine λ which is not of interest. Hence we use only the second and third to solve for x, y,

$$
2 y(1-x)=0 \text { and } y^{2}(1-x)-x^{2}(x+3)=0
$$

Solving the second yields $x=1$ and $y=0$. The third equation, however, cannot be satisfied with $x=1$. and therefore $y=0$ and hence $x^{2}(x+3)=0$ or $x=0$. Which means that $x=0$ or $x=-3$. Clearly $-3<0$. So the solution is the point $(-3,0)$.

Another way of solving this problem is to assume that x is a function of y. Thus, at the point in question $x^{\prime}(y)=0$. Differentiating implicitly yields

$$
2 y(1-x)-2 y x^{\prime}-3 x^{2} x^{\prime}-6 x x^{\prime}=0
$$

and since $x^{\prime}=0$ we find $2 y(1-x)=0$. The rest is as outlined above.

Extra Credit: What is the area of the region R in the (x, y) plane for which the integral

$$
\int_{R} \int\left(9-\frac{x^{2}}{4}-4 y^{2}\right) d A
$$

is as large as possible.

The region R is given by all those points (x, y) where $9-\frac{x^{2}}{4}-4 y^{2} \geq 0 . R$ cannot have any parts where the integrant is negative (that would diminish the integral). Further if there is any domain not part of R where the integrant is positive we could add it to R and increase the integral. The region R is the region bounded by the ellipse

$$
\frac{x^{2}}{4}+4 y^{2}=9 \text { or } \frac{x^{2}}{6^{2}}+\left(\frac{2}{3}\right)^{2} y^{2}=1
$$

The large semi axis is $a=6$ and the small one is $b=3 / 2$ and hence the area is $\pi a b=9 \pi$.

