SOLUTIONS FOR HOMEWORK 1

Problem 1: a) We have the inequalities

$$\max_{1 \le j \le d} |x_j| \le ||x||_p \le \max_{1 \le j \le d} |x_j| d^{1/p}$$

As $p \to \infty$, $d^{1/p} \to 1$.

b) We have to show that

 $||f||_{L_q} \le ||f||_{L_p}$

which implies that whenever $f \in L_p$ we have that $f \in L_q$, i.e., $L_q \subset L_p$. We use Hölder's inequality. Assume first that f is bounded. Write

$$\int_{a}^{b} |f(x)|^{q} dx = \int_{a}^{b} 1 \cdot |f(x)|^{q} dx \le \left(\int_{a}^{b} 1^{r} dx\right)^{1/r} \left(\int_{a}^{b} [|f(x)|^{q}]^{s} dx\right)^{1/s}$$

where 1/r + 1/s = 1. Now we pick $s = p/q \ge 1, r =$ and we get

$$\left(\int_{a}^{b} |f(x)|^{q} dx\right)^{1/q} \le \left([b-a]\right)^{\frac{p-q}{pq}} \left(\int_{a}^{b} |f(x)|^{p} dx\right)^{1/p}$$

By monotone convergence, we now can remove the condition that f is bounded.

Problem 2: a) Assume that B is closed and $x_n \in B$ a sequence that converges to $x \in X$. We have to show that $x \in B$. Suppose not, i.e., x is in the complement of B, which by assumption is open. Hence there exists a ball centered at x with positive radius which is entirely contained in the complement of B. Since $x_n \in B$ converges to x there must be points of the sequence in the ball, which is a contradiction. Conversely, assume that B is a set with the property that for every convergent sequence in B the limit is also in B. We have to show that the complement of B is open. Suppose not. Hence, there exists a point x in the complement of B such that every ball centered at x with sufficiently small radius intersects B. Pick such a ball C_1 which contains some $x_1 \in B$. Since $x_1 \neq x$ we can find a smaller ball C_2 that does not contain x_1 but another point $x_2 \in B$. Continuing in this way, we can construct a sequence of points that converge to x and hence $x \in B$, a contradiction.

b) Consider any collection of open set $U_{\iota}, \iota \in I$ and form their union $U = \bigcup_{\iota \in I} U_{\iota}$. Pick any point $x \in U$. Then $x \in U_{\iota}$ for some $\iota \in I$. Since U_{ι} is open there exists an open ball centered at x which is contained in U_{ι} and hence in U. Thus, U is open. The statement about intersections follows from $\bigcap_{\iota \in I} C_{\iota} = [\bigcup_{\iota \in I} C_{\iota}^{c}]^{c}$ where C^{c} is the complement of C in the space X. **Problem 3:** It suffices to show that an arbitrary norm $\|\cdot\|$ on \mathbb{R}^d is equivalent to the Euclidean norm $|\cdot|$. We start with

$$||x|| = ||\sum_{j=1}^{d} x_j e_j|| \le \sum_{j=1}^{d} |x_j|||e_j|| \le \left(\sum_{j=1}^{d} ||e_j||^2\right)^{1/2} |x|.$$

The lower bound is a bit trickier. We have to find a positive lower bound on the ratio

$$\frac{\|x\|}{|x|} = \|\frac{x}{|x|}\|$$

in other words we have to find a positive lower bound on the function ||x|| restricted to the Euclidean sphere of radius 1. The sphere is compact and ||x|| is a continuous function on the sphere and hence attains its minimum at some point x_0 with $|x_0| = 1$. Thus $||x_0|| > 0$ and

 $||x|| \ge ||x_0|| |x|$.

Problem 4: a) Let $x^n \in \ell_p$ be a C.S., i.e, for $\varepsilon > 0$ arbitrary there exists N so that

$$\left(\sum_{j=1}^{\infty} |x_j^n - x_j^m|^p\right)^{1/p} < \varepsilon$$

for all m, n > N. Hence x_j^n is a Cauchy sequence and hence has a limit x_j . Now

$$\left(\sum_{j=1}^{K} |x_j - x_j^m|^p\right)^{1/p} = \lim_{n \to \infty} \left(\sum_{j=1}^{K} |x_j^n - x_j^m|^p\right)^{1/p} < \varepsilon$$

for any K and all m > N. Since the right side does not depend on K we may let $k \to \infty$ and get that

$$\|x - x^m\| = \left(\sum_{j=1}^{\infty} |x_j - x_j^m|^p\right)^{1/p} \le \varepsilon$$

for all m > N. Because $|||x|| - ||x^m||| \le ||x - x^m||$, $x \in \ell_p$. Thus, x^m converges to x.

b) The case ℓ_{∞} is similar. Each x_j^n converges to some x_j . For every j we have that

$$|x_j - x_j^m| = \lim n \to \infty |x_j^n - x_j^m| < \varepsilon$$

all m > N, and hence it follows that

$$||x - x^m||_{\infty} = \sup_j |x_j - x_j^m| \le \varepsilon .$$

This implies that $x \in \ell_{\infty}$ and that x^m converges to x in ℓ_{∞} .