SOLUTIONS FOR HOMEWORK 1

Problem 1: a) We have the inequalities

$$
\max _{1 \leq j \leq d}\left|x_{j}\right| \leq\|x\|_{p} \leq \max _{1 \leq j \leq d}\left|x_{j}\right| d^{1 / p}
$$

As $p \rightarrow \infty, d^{1 / p} \rightarrow 1$.
b) We have to show that

$$
\|f\|_{L_{q}} \leq\|f\|_{L_{p}}
$$

which implies that whenever $f \in L_{p}$ we have that $f \in L_{q}$, i.e., $L_{q} \subset L_{p}$. We use Hölder's inequality. Assume first that f is bounded. Write

$$
\int_{a}^{b}|f(x)|^{q} d x=\int_{a}^{b} 1 \cdot|f(x)|^{q} d x \leq\left(\int_{a}^{b} 1^{r} d x\right)^{1 / r}\left(\int_{a}^{b}\left[|f(x)|^{q}\right]^{s} d x\right)^{1 / s}
$$

where $1 / r+1 / s=1$. Now we pick $s=p / q \geq 1, r=$ and we get

$$
\left(\int_{a}^{b}|f(x)|^{q} d x\right)^{1 / q} \leq([b-a])^{\frac{p-q}{p q}}\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}
$$

By monotone convergence, we now can remove the condition that f is bounded.

Problem 2: a) Assume that B is closed and $x_{n} \in B$ a sequence that converges to $x \in X$. We have to show that $x \in B$. Suppose not, i.e., x is in the complement of B, which by assumption is open. Hence there exists a ball centered at x with positive radius which is entirely contained in the complement of B. Since $x_{n} \in B$ converges to x there must be points of the sequence in the ball, which is a contradiction. Conversely, assume that B is a set with the property that for every convergent sequence in B the limit is also in B. We have to show that the complement of B is open. Suppose not. Hence, there exists a point x in the complement of B such that every ball centered at x with sufficiently small radius intersects B. Pick such a ball C_{1} which contains some $x_{1} \in B$. Since $x_{1} \neq x$ we can find a smaller ball C_{2} that does not contain x_{1} but another point $x_{2} \in B$. Continuing in this way, we can construct a sequence of points that converge to x and hence $x \in B$, a contradiction.
b) Consider any collection of open set $U_{\iota}, \iota \in I$ and form their union $U=\cup_{\iota \in I} U_{\iota}$. Pick any point $x \in U$. Then $x \in U_{\iota}$ for some $\iota \in I$. Since U_{ι} is open there exists an open ball centered at x which is contained in U_{ι} and hence in U. Thus, U is open. The statement about intersections follows from $\cap_{\iota \in I} C_{\iota}=\left[\cup_{\iota \in I} C_{\iota}^{c}\right]^{c}$ where C^{c} is the complement of C in the space X.

Problem 3: It suffices to show that an arbitrary norm $\|\cdot\|$ on \mathbb{R}^{d} is equivalent to the Euclidean norm $|\cdot|$. We start with

$$
\|x\|=\left\|\sum_{j=1}^{d} x_{j} e_{j}\right\| \leq \sum_{j=1}^{d}\left|x_{j}\right|\left\|e_{j}\right\| \leq\left(\sum_{j=1}^{d}\left\|e_{j}\right\|^{2}\right)^{1 / 2}|x|
$$

The lower bound is a bit trickier. We have to find a positive lower bound on the ratio

$$
\frac{\|x\|}{|x|}=\left\|\frac{x}{|x|}\right\|
$$

in other words we have to find a positive lower bound on the function $\|x\|$ restricted to the Euclidean sphere of radius 1 . The sphere is compact and $\|x\|$ is a continuous function on the sphere and hence attains its minimum at some point x_{0} with $\left|x_{0}\right|=1$. Thus $\left\|x_{0}\right\|>0$ and

$$
\|x\| \geq\left\|x_{0}\right\||x|
$$

Problem 4: a) Let $x^{n} \in \ell_{p}$ be a C.S., i.e, for $\varepsilon>0$ arbitrary there exists N so that

$$
\left(\sum_{j=1}^{\infty}\left|x_{j}^{n}-x_{j}^{m}\right|^{p}\right)^{1 / p}<\varepsilon
$$

for all $m, n>N$. Hence x_{j}^{n} is a Cauchy sequence and hence has a limit x_{j}. Now

$$
\left(\sum_{j=1}^{K}\left|x_{j}-x_{j}^{m}\right|^{p}\right)^{1 / p}=\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{K}\left|x_{j}^{n}-x_{j}^{m}\right|^{p}\right)^{1 / p}<\varepsilon
$$

for any K and all $m>N$. Since the right side does not depend on K we may let $k \rightarrow \infty$ and get that

$$
\left\|x-x^{m}\right\|=\left(\sum_{j=1}^{\infty}\left|x_{j}-x_{j}^{m}\right|^{p}\right)^{1 / p} \leq \varepsilon
$$

for all $m>N$. Because $\left|\|x\|-\left\|x^{m}\right\|\right| \leq\left\|x-x^{m}\right\|, x \in \ell_{p}$. Thus, x^{m} converges to x.
b) The case ℓ_{∞} is similar. Each x_{j}^{n} converges to some x_{j}. For every j we have that

$$
\left|x_{j}-x_{j}^{m}\right|=\lim n \rightarrow \infty\left|x_{j}^{n}-x_{j}^{m}\right|<\varepsilon
$$

all $m>N$, and hence it follows that

$$
\left\|x-x^{m}\right\|_{\infty}=\sup _{j}\left|x_{j}-x_{j}^{m}\right| \leq \varepsilon
$$

This implies that $x \in \ell_{\infty}$ and that x^{m} converges to x in ℓ_{∞}.

