
SOLUTIONS FOR HOMEWORK 1

Problem 1: a) We have the inequalities

max
1≤j≤d

|xj| ≤ ‖x‖p ≤ max
1≤j≤d

|xj|d1/p

As p→∞, d1/p → 1.

b) We have to show that

‖f‖Lq ≤ ‖f‖Lp

which implies that whenever f ∈ Lp we have that f ∈ Lq, i.e., Lq ⊂ Lp. We use Hölder’s
inequality. Assume first that f is bounded. Write∫ b

a

|f(x)|qdx =

∫ b

a

1 · |f(x)|qdx ≤
(∫ b

a

1rdx

)1/r (∫ b

a

[|f(x)|q]sdx
)1/s

where 1/r + 1/s = 1. Now we pick s = p/q ≥ 1, r = and we get(∫ b

a

|f(x)|qdx
)1/q

≤ ([b− a])
p−q
pq

(∫ b

a

|f(x)|pdx
)1/p

.

By monotone convergence, we now can remove the condition that f is bounded.

Problem 2: a) Assume that B is closed and xn ∈ B a sequence that converges to x ∈ X.
We have to show that x ∈ B. Suppose not, i.e., x is in the complement of B, which by
assumption is open. Hence there exists a ball centered at x with positive radius which is
entirely contained in the complement of B. Since xn ∈ B converges to x there must be points
of the sequence in the ball, which is a contradiction. Conversely, assume that B is a set with
the property that for every convergent sequence in B the limit is also in B. We have to
show that the complement of B is open. Suppose not. Hence, there exists a point x in the
complement of B such that every ball centered at x with sufficiently small radius intersects B.
Pick such a ball C1 which contains some x1 ∈ B. Since x1 6= x we can find a smaller ball C2

that does not contain x1 but another point x2 ∈ B. Continuing in this way, we can construct
a sequence of points that converge to x and hence x ∈ B, a contradiction.

b) Consider any collection of open set Uι, ι ∈ I and form their union U = ∪ι∈IUι. Pick
any point x ∈ U . Then x ∈ Uι for some ι ∈ I. Since Uι is open there exists an open ball
centered at x which is contained in Uι and hence in U . Thus, U is open. The statement about
intersections follows from ∩ι∈ICι = [∪ι∈ICc

ι ]
c where Cc is the complement of C in the space

X.
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Problem 3: It suffices to show that an arbitrary norm ‖ · ‖ on Rd is equivalent to the
Euclidean norm | · |. We start with

‖x‖ = ‖
d∑
j=1

xjej‖ ≤
d∑
j=1

|xj|‖ej‖ ≤

(
d∑
j=1

‖ej‖2
)1/2

|x| .

The lower bound is a bit trickier. We have to find a positive lower bound on the ratio

‖x‖
|x|

= ‖ x
|x|
‖

in other words we have to find a positive lower bound on the function ‖x‖ restricted to the
Euclidean sphere of radius 1. The sphere is compact and ‖x‖ is a continuous function on the
sphere and hence attains its minimum at some point x0 with |x0| = 1. Thus ‖x0‖ > 0 and

‖x‖ ≥ ‖x0‖|x| .

Problem 4: a) Let xn ∈ `p be a C.S., i.e, for ε > 0 arbitrary there exists N so that(
∞∑
j=1

|xnj − xmj |p
)1/p

< ε

for all m,n > N . Hence xnj is a Cauchy sequence and hence has a limit xj. Now(
K∑
j=1

|xj − xmj |p
)1/p

= lim
n→∞

(
K∑
j=1

|xnj − xmj |p
)1/p

< ε

for any K and all m > N . Since the right side does not depend on K we may let k →∞ and
get that

‖x− xm‖ =

(
∞∑
j=1

|xj − xmj |p
)1/p

≤ ε

for all m > N . Because |‖x‖ − ‖xm‖| ≤ ‖x− xm‖, x ∈ `p. Thus, xm converges to x.

b) The case `∞ is similar. Each xnj converges to some xj. For every j we have that

|xj − xmj | = limn→∞|xnj − xmj | < ε

all m > N , and hence it follows that

‖x− xm‖∞ = sup
j
|xj − xmj | ≤ ε .

This implies that x ∈ `∞ and that xm converges to x in `∞.


