HOMEWORK 2, DUE ON TUESDAY SEPTEMBER 27.

Problem 1: Show that $\ell_{1}^{*}=\ell_{\infty}$.

First we show that $\ell_{\infty} \subset \ell_{1}^{*}$. Pick $a \in \ell_{\infty}$ and consider the linear functional on ℓ_{1} given by

$$
f_{a}(b)=\sum_{j=1}^{\infty} a_{i} b_{i}
$$

then

$$
\left|f_{a}(b)\right| \leq \sup _{j}\left|a_{i}\right| \sum_{j=1}^{\infty}\left|b_{j}\right|=\|a\|_{\ell_{\infty}}\|b\|_{\ell_{1}}
$$

and hence $f_{a} \in \ell_{1}^{*}$. Conversely, if $f \in \ell_{1}^{*}$ and e_{j} are the canonical vectors, then

$$
f(b)=\sum_{j=1}^{\infty} f\left(e_{j}\right) b_{j}
$$

This follows since the sequence b_{j} is summable. Moreover, $\left|f\left(e_{j}\right)\right| \leq\|f\|_{\ell_{1}^{*}}\left\|e_{j}\right\|_{\ell_{1}}=\|f\|_{\ell_{1}^{*}}$. Hence $\left\{f\left(e_{j}\right)\right\} \in \ell_{\infty}$.

Problem 2: Prove that any finite dimensional normed space is reflexive.

Set $N=\operatorname{dim} X$. We know from the lecture that for any basis in e_{1}, \ldots, e_{N} there exists a basis $f_{1}, \ldots, f_{N} \in X^{*}$ such that

$$
f_{i}\left(e_{j}\right)=\delta_{i, j} .
$$

Hence, $\operatorname{dim} X^{*}=N$. The same argument yields $\operatorname{dim} X^{* *}=N$. Because $X \subset X^{* *}$ is a subspace and X has the same dimension as $X^{* *}$ we have that $X=X^{* *}$.

Problem 3: Show that ℓ_{∞} is not separable. (Hint: Consider balls of small radii centered at sequences with integer coefficients. Show that there are uncountably many such balls.)

Pick the any subset $A \subset \mathbb{N}$ and define vectors $e_{A} \in \ell_{\infty}$ by setting $e_{j}=1$ if $j \in A$ and $e_{j}=0$ if $j \notin A$. There are uncountably many such vectors. For any such two vectors e_{A}, e_{B} with $A \neq B$ we have that

$$
\left\|e_{A}-e_{B}\right\|=1
$$

Now consider balls of radius $1 / 3$ centered the vectors e_{A} with $A \subset \mathbb{N}$. These are uncountably many disjoint balls in ℓ_{∞} and hence this space is not separable.

Problem 4: Prove that if $\left\{\phi_{n}(x)\right\}_{n=1}^{\infty}$ is an orthonormal basis in $L^{2}[a, b]$ then for all $x \in[a, b]$

$$
\sum_{n=1}^{\infty}\left|\int_{a}^{x} \phi_{n}(t) d t\right|^{2}=x-a
$$

(The converse also holds, but is a bit trickier to prove.)

Write as an inner product

$$
\int_{a}^{x} \phi_{n}(t) d t=\left\langle\phi_{n}, \chi_{a}\right\rangle
$$

where χ_{a} is the characteristic function of the set $[a, x]$. Then, by the Parseval formula

$$
\sum_{n=1}^{\infty}\left|\left\langle\phi_{n}, \chi_{a}\right\rangle\right|^{2}=\int\left|\chi_{a}(t)\right|^{2} d t=\int_{a}^{x} d t=(x-a)
$$

Problem 5: Let X be a normed space and Y be a Banach Space. Show that the space of linear bounded operators $L(X \mapsto Y)$ is a Banach space.

Let A_{n} be a Cauchy sequence in $L(X \mapsto Y)$. Then the sequence $\left\|A_{n}\right\|$ is uniformly bounded. To see this, pick $\varepsilon>0$ and write

$$
\left\|A_{n}\right\| \leq\left\|A_{m}\right\|+\left\|A_{n}-A_{m}\right\|
$$

There exists N so that for all $n, m>N$ the second term on the right side is less than ε. Fixing $m>N$ shows that $\left\|A_{n}\right\|$ is bounded independent of n. Pick any $x \in X$. Then $A_{n} x \in Y$ is a Cauchy sequence in Y and since Y is complete it converges to some vector which we denote by $A x$. It is plain that the map $x \rightarrow A x$ is linear. Moreover,

$$
\|A x\|=\lim _{n \rightarrow \infty}\left\|A_{n} x\right\| \leq \sup _{n}\left\|A_{n}\right\|\|x\|
$$

and hence A is a bounded operator. Finally for $m>N$,

$$
\left\|A x-A_{m} x\right\|=\lim _{n \rightarrow \infty}\left\|A_{n} x-A_{m} x\right\|<\varepsilon\|x\|
$$

i.e.,

$$
\left\|A-A_{m}\right\|<\varepsilon
$$

Hence A_{n} converges to A in norm.

