HOMEWORK 2, DUE ON TUESDAY SEPTEMBER 27.

Problem 1: Show that $\ell_1^* = \ell_{\infty}$.

First we show that $\ell_{\infty} \subset \ell_1^*$. Pick $a \in \ell_{\infty}$ and consider the linear functional on ℓ_1 given by

$$f_a(b) = \sum_{j=1}^{\infty} a_i b_i$$

then

$$|f_a(b)| \le \sup_j |a_i| \sum_{j=1}^\infty |b_j| = ||a||_{\ell_\infty} ||b||_{\ell_1}$$

and hence $f_a \in \ell_1^*$. Conversely, if $f \in \ell_1^*$ and e_j are the canonical vectors, then

$$f(b) = \sum_{j=1}^{\infty} f(e_j) b_j \; .$$

This follows since the sequence b_j is summable. Moreover, $|f(e_j)| \leq ||f||_{\ell_1^*} ||e_j||_{\ell_1} = ||f||_{\ell_1^*}$. Hence $\{f(e_j)\} \in \ell_{\infty}$.

Problem 2: Prove that any finite dimensional normed space is reflexive.

Set $N = \dim X$. We know from the lecture that for any basis in e_1, \ldots, e_N there exists a basis $f_1, \ldots, f_N \in X^*$ such that

$$f_i(e_j) = \delta_{i,j}$$
.

Hence, $\dim X^* = N$. The same argument yields $\dim X^{**} = N$. Because $X \subset X^{**}$ is a subspace and X has the same dimension as X^{**} we have that $X = X^{**}$.

Problem 3: Show that ℓ_{∞} is not separable. (Hint: Consider balls of small radii centered at sequences with integer coefficients. Show that there are uncountably many such balls.)

Pick the any subset $A \subset \mathbb{N}$ and define vectors $e_A \in \ell_{\infty}$ by setting $e_j = 1$ if $j \in A$ and $e_j = 0$ if $j \notin A$. There are uncountably many such vectors. For any such two vectors e_A, e_B with $A \neq B$ we have that

$$\|e_A - e_B\| = 1 \ .$$

Now consider balls of radius 1/3 centered the vectors e_A with $A \subset \mathbb{N}$. These are uncountably many disjoint balls in ℓ_{∞} and hence this space is not separable.

Problem 4: Prove that if $\{\phi_n(x)\}_{n=1}^{\infty}$ is an orthonormal basis in $L^2[a, b]$ then for all $x \in [a, b]$

$$\sum_{n=1}^{\infty} |\int_a^x \phi_n(t) dt|^2 = x - a \; .$$

(The converse also holds, but is a bit trickier to prove.)

Write as an inner product

$$\int_{a}^{x} \phi_n(t) dt = \langle \phi_n, \chi_a \rangle$$

where χ_a is the characteristic function of the set [a, x]. Then, by the Parseval formula

$$\sum_{n=1}^{\infty} |\langle \phi_n, \chi_a \rangle|^2 = \int |\chi_a(t)|^2 dt = \int_a^x dt = (x-a)$$

Problem 5: Let X be a normed space and Y be a Banach Space. Show that the space of linear bounded operators $L(X \mapsto Y)$ is a Banach space.

Let A_n be a Cauchy sequence in $L(X \mapsto Y)$. Then the sequence $||A_n||$ is uniformly bounded. To see this, pick $\varepsilon > 0$ and write

$$||A_n|| \le ||A_m|| + ||A_n - A_m||$$
.

There exists N so that for all n, m > N the second term on the right side is less than ε . Fixing m > N shows that $||A_n||$ is bounded independent of n. Pick any $x \in X$. Then $A_n x \in Y$ is a Cauchy sequence in Y and since Y is complete it converges to some vector which we denote by Ax. It is plain that the map $x \to Ax$ is linear. Moreover,

$$||Ax|| = \lim_{n \to \infty} ||A_nx|| \le \sup_n ||A_n|| ||x||$$

and hence A is a bounded operator. Finally for m > N,

$$||Ax - A_m x|| = \lim_{n \to \infty} ||A_n x - A_m x|| < \varepsilon ||x|| ,$$

i.e.,

$$\|A - A_m\| < \varepsilon .$$

Hence A_n converges to A in norm.