HOMEWORK 4, DUE THURSDAY OCTOBER 27

Problem 1: (10 points) Let X be a Banach space, $A: X \rightarrow X$ be a bounded linear invertible with a bounded inverse and $K: X \rightarrow X$ a linear compact operator. Show that for any $y \in X$ the equation $A x+K x=y$ has a unique solution if and only if $A x+K x=0$ has only the trivial solution.

Problem 2: (10 points) On the space $L^{2}[0,1]$ find the spectrum of the operator

$$
K f(t)=\int_{0}^{t} f(s) d s
$$

Problem 3: (15 points) a) For the operator K in Problem 2, show that the Neumann Series, i.e., $\sum_{n=0}^{\infty} K^{n}$ exists.
b) Find a simple expression for

$$
\sum_{n=0}^{\infty} K^{n} f(t)
$$

where $f \in L^{2}[0,1]$.
Hint: Compute $K^{2} f, K^{3} f$ and simplify using integration by parts. Then guess the general term and proceed by induction.

Problem 4: (15 points) Consider the operator $K: L^{2}[0,1] \rightarrow L^{2}[0,1]$ given by

$$
K f(t)=\int_{0}^{1} \min \{t, s\} f(s) d s
$$

a) Prove that K is compact and self-adjoint.
b) Find the spectrum of K.
c) Find $\|K\|$.

Hint: Differentiate!

