
HOMEWORK 4, DUE THURSDAY OCTOBER 27

Problem 1: (10 points) Let X be a Banach space, A : X → X be a bounded linear
invertible with a bounded inverse and K : X → X a linear compact operator. Show that for
any y ∈ X the equation Ax + Kx = y has a unique solution if and only if Ax + Kx = 0 has
only the trivial solution.

Because A has a bounded inverse we may write

A+K = A(I + A−1K)

and note that (A + K)x = y has a unique solution if and only if (I + A−1K)x = A−1y
has a unique solution. Since A−1K is compact we may apply the Fredholm alternative and
concluded that this equation has a unique solution for any y if and only if ((I +A−1K)x = 0
has only the trivial solution which holds if and only if Ax + Kx = 0 has only the trivial
solution.

Problem 2: (10 points) On the space L2[0, 1] find the spectrum of the operator

Kf(t) =

∫ t

0

f(s)ds .

The operator is a compact operator on L2[0, 1] and hence 0 ∈ σ(K). Thus, we only have to
investigate the eigenvalues λ 6= 0. ∫ t

0

f(s)ds = λf(t) .

Since the left side is continuous, so is the right side, i.e., the function f is a continuous function.
Thus, the left side is differentiable and hence f is also differentiable. (This is proving regularity
by bootstrap). Thus, we may differentiate and get

f(t) = λf ′(t)

and hence

f(t) = cet/λ

where c is some constant. However, as t→ 0 the left side of the eigenvalue equation vanishes
and hence f(0) = 0. Thus, c = 0 and the solution vanishes identically. Thus, there re no
non-zero eigenvalues. So σ(K) = {0}.

Problem 3: (15 points) a) For the operator K in Problem 2, show that the Neumann
Series, i.e.,

∑∞
n=0K

n exists.
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b) Find a simple expression for
∞∑
n=0

Knf(t)

where f ∈ L2[0, 1].

Hint: Compute K2f,K3f and simplify using integration by parts. Then guess the general
term and proceed by induction.

we compute a bound on the norm of K.∫ 1

0

|Kf(t)|2dt =

∫ 1

0

|
∫ t

0

f(s)ds|2dt =

∫ 1

0

|
∫ t

0

1 · f(s)ds|2dt

≤
∫ 1

0

[

∫ t

0

1ds][

∫ t

0

|f(s)|2ds]dt ≤ 1

2
‖f‖2L2[0,1] .

Hence, ‖K‖ ≤ 1√
2

and the Neumann series converges.

For b) note that, using integration by parts,∫ t

0

Kn−1f(s)ds =

∫ t

0

1·Kn−1f(s)ds = sKn−1f(s)|t0−
∫ t

0

s
d

ds
Kn−1f(s)ds =

∫ t

0

(t−s)Kn−2f(s)ds .

Another integration by parts yields∫ t

0

Kn−1f(s)ds =

∫ t

0

(t− s)2

2
Kn−3f(s)ds

and continuing this way we find that

Knf(t) =

∫ t

0

(t− s)n−1

(n− 1)!
f(s)ds

Summing over n yields
∞∑
n=0

Knf(t) = f(t) +

∫ t

0

et−sf(s)ds .

Remark: Note that the the properties of K are analogous to Nilpotent matrices, i.e.,
strictly upper or strictly lower triangular matrices.

Problem 4: (15 points) Consider the operator K : L2[0, 1]→ L2[0, 1] given by

Kf(t) =

∫ 1

0

min{t, s}f(s)ds .

a) Prove that K is compact and self-adjoint.

b) Find the spectrum of K.

c) Find ‖K‖.
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Hint: Differentiate!

The function min{t, s} ∈ C([0, 1]× [0, 1]) and hence the operator is compact and since

min{s, t} = min{t, s}
the operator is self-adjoint.

Next we have to compute the eigenvalues.
Write

Kf(t) =

∫ t

0

sf(s)ds+ t

∫ 1

t

f(s)ds = λf(t) (1)

Again, the left side of the equation is continuous and hence so is the right side. Feeding
this information back to the left side shows that it is in fact differentiable and hence so is f .
Differentiating yields ∫ 1

t

f(s)ds = λf ′(t) (2)

and once more,
−f(t) = λf ′′(t) .

Solving this equation yields
f(t) = Aekt +Be−kt

where k2 = − 1
λ
. Note that k cannot be zero. Note that (2) requires that f ′(1) = 0 and (1)

requires that f(0) = 0. Hence

A+B = 0 , k(Aek −Be−k) = 0 .

Solving this yields
kA cosh k = 0, B = −A .

We must have nontrivial solutions and hence cosh k = 0. Writing k = iκ we must choose κ
such that cosκ = 0, i.e.,

κ =
π

2
+ πk

where k is any integer. Hence, the eigenvalues are

λk =
1

(π
2

+ πk)2

and the eigenfunctions are

fk(t) = A sin(t[
π

2
+ πk]) .

For the norm

‖K‖ = max
k
|λk| =

4

π2
.


