HOMEWORK 5, DUE TUESDAY NOVEMBER 14

Problem 1: (10 points) Let $B: H \rightarrow H$ be a bounded operator. Show that for any $t \in \mathbb{R}$, the exponential series

$$
\operatorname{Exp}(t B):=\sum_{j=0}^{\infty} \frac{t^{j}}{j!} B^{j}
$$

converges in the operator norm.

Problem 2: (10 points) Show that for any $s, t \in \mathbb{R}$,

$$
\operatorname{Exp}(t B) \operatorname{Exp}(s B)=\operatorname{Exp}((s+t) B)
$$

Hint: Approximate the factors by finite sums, use the binomial formula and estimate.

Problem 3: (10 points) Let $A: H \rightarrow H$ be a bounded self-adjoint operator. Show that for any $t \in \mathbb{R}$ the operator

$$
U=E x p(i A t)
$$

is unitary, i.e., U is invertible and $U^{*} U=I$.

Problem 4: (10 points) Let $A: H \rightarrow H$ be a bounded, non-negative self-adjoint operator, i.e., $\langle A x, x\rangle \geq 0$. Show that $(A+\lambda)^{-1}$ exist and is a bounded operator for all $\lambda>0$, i.e., $\lambda \in \rho(A)$, the resolvent set of A.

Problem 5: (10 points) Let A and B be two bounded positive self-adjoint operators, both with bounded inverses. Assume that $A<B$. Prove that

$$
B^{-1}<A^{-1}
$$

