HOMEWORK 5, DUE TUESDAY NOVEMBER 14

Problem 1: (10 points) Let $B : H \to H$ be a bounded operator. Show that for any $t \in \mathbb{R}$, the exponential series

$$Exp(tB) := \sum_{j=0}^{\infty} \frac{t^j}{j!} B^j$$

converges in the operator norm.

The sequence

$$A_n = \sum_{j=0}^n \frac{t^j}{j!} B^j$$

is a Cauchy sequence because for $n \geq m$

$$||A_n - A_m|| \le \sum_{j=m+1}^n \frac{t^j}{j!} ||B||^j \le \sum_{j=m+1}^\infty \frac{t^j}{j!} ||B||^j \to 0$$

as $m \to \infty$. Since L(H) is complete the sequence converges.

Problem 2: (10 points) Show that for any $s, t \in \mathbb{R}$, Exp(tB)Exp(sB) = Exp((s+t)B).

Hint: Approximate the factors by finite sums, use the binomial formula and estimate.

$$\left[\sum_{m=0}^{N} \frac{t^{m}}{m!} B^{m}\right]\left[\sum_{n=0}^{N} \frac{s^{n}}{n!} B^{n}\right] = \sum_{k=0}^{2N} \frac{1}{k!} B^{k} \sum_{n=0}^{\min(k,N)} s^{n} t^{k-n} \frac{k!}{n!(k-n)!}$$

We write,

$$\sum_{k=0}^{2N} \frac{1}{k!} B^k \sum_{n=0}^{\min(k,N)} s^n t^{k-n} \frac{k!}{n!(k-n)!}$$
$$= \sum_{k=0}^N \frac{1}{k!} B^k \sum_{n=0}^k s^n t^{k-n} \frac{k!}{n!(k-n)!} + \sum_{k=N+1}^{2N} \frac{1}{k!} B^k \sum_{n=0}^N s^n t^{k-n} \frac{k!}{n!(k-n)!}$$
$$= \sum_{k=0}^N \frac{1}{k!} B^k (s+t)^k + R_N$$

where

$$R_N = \sum_{k=N+1}^{2N} \frac{1}{k!} B^k \sum_{\substack{n=0\\1}}^{N} s^n t^{k-n} \frac{k!}{n!(k-n)!}$$

Now,

$$\sum_{n=0}^{N} |s|^{n} |t|^{k-n} \frac{k!}{n!(k-n)!} \le \sum_{n=0}^{k} |s|^{n} |t|^{k-n} \frac{k!}{n!(k-n)!} = (|s|+|t|)^{k}$$

and hence

$$||R_N|| \le \sum_{k=N+1}^{2N} \frac{1}{k!} ||B||^k (|s|+|t|)^k$$

which tends to 0 as $N \to \infty$.

Problem 3: (10 points) Let $A : H \to H$ be a bounded self-adjoint operator. Show that for any $t \in \mathbb{R}$ the operator

$$U = Exp(iAt)$$

is unitary, i.e., U is invertible and $U^*U = I$.

This follows from the previous problem by noting that U is invertible since $U^{-1} = Exp(-iAt)$. Next, because

$$U = \sum_{j=0}^{\infty} \frac{(it)^j}{j!} A^j$$

we see that

$$U^* = \sum_{j=0}^{\infty} \frac{(-it)^j}{j!} A^{*j} = \sum_{j=0}^{\infty} \frac{(-it)^j}{j!} A^j = Exp(-iAt) .$$

Problem 4: (10 points) Let $A : H \to H$ be a bounded, non-negative self-adjoint operator, i.e., $\langle Ax, x \rangle \geq 0$. Show that $(A + \lambda)^{-1}$ exist and is a bounded operator for all $\lambda > 0$, i.e., $\lambda \in \rho(A)$, the resolvent set of A.

We have that

$$||(A + \lambda I)x||^{2} = ||Ax||^{2} + 2\lambda \langle Ax, x \rangle + \lambda^{2} ||x||^{2} \ge \lambda^{2} ||x||^{2}$$

since $\lambda > 0$ and $\langle Ax, x \rangle \ge 0$. Hence

$$\|(A + \lambda I)x\| \ge \lambda \|x\| . \tag{1}$$

This shows that $A + \lambda I$ is injective. Moreover, suppose that $y_n \in \text{Ran}(A + \lambda I)$ is a sequence that converges to y in H. There exists x_n such that $y_n = (A + \lambda I)x_n$ and from (1) we see that for any $n \ge m$

$$||y_n - y_m|| = ||(A + \lambda I)(x_n - x_m)|| \ge \lambda ||x_n - x_m||$$

which shows that x_n is a Cauchy sequence which converges to some $x \in H$. Since A is bounded Ax_n converges to Ax and hence we have that

$$y = \lim_{n \to \infty} (A + \lambda I) x_n = (A + \lambda I) x$$

and hence $y \in \operatorname{Ran}(A + \lambda I)$, i.e., $\operatorname{Ran}(A + \lambda I)$ is closed. Because $A = A^*$

$$H = \overline{\operatorname{Ran}(A + \lambda I)} \oplus \operatorname{Ker}(A + \lambda I) = \operatorname{Ran}(A + \lambda I) .$$

Hence $(A + \lambda I)$ is invertible and from (1) we find that

$$\|(A+\lambda I)^{-1}\| \le \frac{1}{\lambda} \ .$$

Another approach is to use the fact that the projection E_{μ} vanishes for $\mu < 0$ and hence $-\lambda$ is a regular point, i.e., $(A - (-\lambda)I) = (A + \lambda I)$ has a bounded inverse.

Problem 5: (10 points) Let A and B be two bounded positive self-adjoint operators, both with bounded inverses. Assume that A < B. Prove that

$$B^{-1} < A^{-1}$$

First we prove the statement for the special case that A = I, i.e., that B > I implies that $B^{-1} < I$. This follows from

$$\langle x,x\rangle = \langle BB^{-1/2}x, B^{-1/2}x\rangle > \langle B^{-1/2}x, B^{-1/2}x\rangle = \langle B^{-1}x, x\rangle$$

The statement A < B is equivalent to $B^{-1/2}AB^{-1/2} < I$. By the previous argument $I < (B^{-1/2}AB^{-1/2})^{-1} = B^{1/2}A^{-1}B^{1/2}$

which in turn is equivalent to

$$B^{-1} < A^{-1}$$
 .

Remark 0.1. One can, quite generally, pose the question for which functions f is it true that $A \leq B$ implies $f(A) \leq f(B)$. This can be answered completely, namely all function of the form

$$f(x) = \int_0^\infty \frac{1}{x+t} \mu(dt)$$

where μ is a positive measure. Note that it is false in general that $A \leq B$ implies that $A^2 \leq B^2$ for positive self adjoint operators.