HOMEWORK 5, DUE TUESDAY NOVEMBER 14

Problem 1: (10 points) Let $B: H \rightarrow H$ be a bounded operator. Show that for any $t \in \mathbb{R}$, the exponential series

$$
\operatorname{Exp}(t B):=\sum_{j=0}^{\infty} \frac{t^{j}}{j!} B^{j}
$$

converges in the operator norm.
The sequence

$$
A_{n}=\sum_{j=0}^{n} \frac{t^{j}}{j!} B^{j}
$$

is a Cauchy sequence because for $n \geq m$

$$
\left\|A_{n}-A_{m}\right\| \leq \sum_{j=m+1}^{n} \frac{t^{j}}{j!}\|B\|^{j} \leq \sum_{j=m+1}^{\infty} \frac{t^{j}}{j!}\|B\|^{j} \rightarrow 0
$$

as $m \rightarrow \infty$. Since $L(H)$ is complete the sequence converges.

Problem 2: (10 points) Show that for any $s, t \in \mathbb{R}$,

$$
\operatorname{Exp}(t B) \operatorname{Exp}(s B)=\operatorname{Exp}((s+t) B)
$$

Hint: Approximate the factors by finite sums, use the binomial formula and estimate.

$$
\left[\sum_{m=0}^{N} \frac{t^{m}}{m!} B^{m}\right]\left[\sum_{n=0}^{N} \frac{s^{n}}{n!} B^{n}\right]=\sum_{k=0}^{2 N} \frac{1}{k!} B^{k} \sum_{n=0}^{\min (k, N)} s^{n} t^{k-n} \frac{k!}{n!(k-n)!}
$$

We write,

$$
\begin{gathered}
\sum_{k=0}^{2 N} \frac{1}{k!} B^{k} \sum_{n=0}^{\min (k, N)} s^{n} t^{k-n} \frac{k!}{n!(k-n)!} \\
=\sum_{k=0}^{N} \frac{1}{k!} B^{k} \sum_{n=0}^{k} s^{n} t^{k-n} \frac{k!}{n!(k-n)!}+\sum_{k=N+1}^{2 N} \frac{1}{k!} B^{k} \sum_{n=0}^{N} s^{n} t^{k-n} \frac{k!}{n!(k-n)!} \\
=\sum_{k=0}^{N} \frac{1}{k!} B^{k}(s+t)^{k}+R_{N}
\end{gathered}
$$

where

$$
R_{N}=\sum_{k=N+1}^{2 N} \frac{1}{k!} B^{k} \sum_{\substack{n=0 \\ 1}}^{N} s^{n} t^{k-n} \frac{k!}{n!(k-n)!}
$$

Now,

$$
\sum_{n=0}^{N}|s|^{n}|t|^{k-n} \frac{k!}{n!(k-n)!} \leq \sum_{n=0}^{k}|s|^{n}|t|^{k-n} \frac{k!}{n!(k-n)!}=(|s|+|t|)^{k}
$$

and hence

$$
\left\|R_{N}\right\| \leq \sum_{k=N+1}^{2 N} \frac{1}{k!}\|B\|^{k}(|s|+|t|)^{k}
$$

which tends to 0 as $N \rightarrow \infty$.

Problem 3: (10 points) Let $A: H \rightarrow H$ be a bounded self-adjoint operator. Show that for any $t \in \mathbb{R}$ the operator

$$
U=\operatorname{Exp}(i A t)
$$

is unitary, i.e., U is invertible and $U^{*} U=I$.
This follows from the previous problem by noting that U is invertible since $U^{-1}=\operatorname{Exp}(-i A t)$. Next, because

$$
U=\sum_{j=0}^{\infty} \frac{(i t)^{j}}{j!} A^{j}
$$

we see that

$$
U^{*}=\sum_{j=0}^{\infty} \frac{(-i t)^{j}}{j!} A^{* j}=\sum_{j=0}^{\infty} \frac{(-i t)^{j}}{j!} A^{j}=\operatorname{Exp}(-i A t)
$$

Problem 4: (10 points) Let $A: H \rightarrow H$ be a bounded, non-negative self-adjoint operator, i.e., $\langle A x, x\rangle \geq 0$. Show that $(A+\lambda)^{-1}$ exist and is a bounded operator for all $\lambda>0$, i.e., $\lambda \in \rho(A)$, the resolvent set of A.

We have that

$$
\|(A+\lambda I) x\|^{2}=\|A x\|^{2}+2 \lambda\langle A x, x\rangle+\lambda^{2}\|x\|^{2} \geq \lambda^{2}\|x\|^{2}
$$

since $\lambda>0$ and $\langle A x, x\rangle \geq 0$. Hence

$$
\begin{equation*}
\|(A+\lambda I) x\| \geq \lambda\|x\| \tag{1}
\end{equation*}
$$

This shows that $A+\lambda I$ is injective. Moreover, suppose that $y_{n} \in \operatorname{Ran}(A+\lambda I)$ is a sequence that converges to y in H. There exists x_{n} such that $y_{n}=(A+\lambda I) x_{n}$ and from (1) we see that for any $n \geq m$

$$
\left\|y_{n}-y_{m}\right\|=\left\|(A+\lambda I)\left(x_{n}-x_{m}\right)\right\| \geq \lambda\left\|x_{n}-x_{m}\right\|
$$

which shows that x_{n} is a Cauchy sequence which converges to some $x \in H$. Since A is bounded $A x_{n}$ converges to $A x$ and hence we have that

$$
y=\lim _{n \rightarrow \infty}(A+\lambda I) x_{n}=(A+\lambda I) x
$$

and hence $y \in \operatorname{Ran}(A+\lambda I)$, i.e., $\operatorname{Ran}(A+\lambda I)$ is closed. Because $A=A^{*}$

$$
H=\overline{\operatorname{Ran}(A+\lambda I)} \oplus \operatorname{Ker}(A+\lambda I)=\operatorname{Ran}(A+\lambda I)
$$

Hence $(A+\lambda I)$ is invertible and from (1) we find that

$$
\left\|(A+\lambda I)^{-1}\right\| \leq \frac{1}{\lambda}
$$

Another approach is to use the fact that the projection E_{μ} vanishes for $\mu<0$ and hence $-\lambda$ is a regular point, i.e., $(A-(-\lambda) I)=(A+\lambda I)$ has a bounded inverse.

Problem 5: (10 points) Let A and B be two bounded positive self-adjoint operators, both with bounded inverses. Assume that $A<B$. Prove that

$$
B^{-1}<A^{-1}
$$

First we prove the statement for the special case that $A=I$, i.e., that $B>I$ implies that $B^{-1}<I$. This follows from

$$
\langle x, x\rangle=\left\langle B B^{-1 / 2} x, B^{-1 / 2} x\right\rangle>\left\langle B^{-1 / 2} x, B^{-1 / 2} x\right\rangle=\left\langle B^{-1} x, x\right\rangle
$$

The statement $A<B$ is equivalent to $B^{-1 / 2} A B^{-1 / 2}<I$. By the previous argument

$$
I<\left(B^{-1 / 2} A B^{-1 / 2}\right)^{-1}=B^{1 / 2} A^{-1} B^{1 / 2}
$$

which in turn is equivalent to

$$
B^{-1}<A^{-1} .
$$

Remark 0.1. One can, quite generally, pose the question for which functions f is it true that $A \leq B$ implies $f(A) \leq f(B)$. This can be answered completely, namely all function of the form

$$
f(x)=\int_{0}^{\infty} \frac{1}{x+t} \mu(d t)
$$

where μ is a positive measure. Note that it is false in general that $A \leq B$ implies that $A^{2} \leq B^{2}$ for positive self adjoint operators.

