HOMEWORK 1: DUE DATE TUESDAY SEPT. 13

Problem 1: Consider \mathbb{R}^d with the norm

$$||x||_p = \left(\sum_{j=1}^d |x_j|^p\right)^{1/p}$$

a) Show that

$$\lim_{p \to \infty} \|x\|_p = \max_{1 \le j \le d} |x_j| .$$

One defines

$$||x||_{\infty} := \max_{1 \le j \le d} |x_j| .$$

b) Prove that for any finite interval [a, b]

$$L_p[a,b] \subset L_q[a,b]$$

provided that $q \leq p$.

Problem 2: Let X be a normed space. Recall that a set $A \subset X$ is open, if for every $x_0 \in A$ there exists r > 0 so that the open ball $B_r(x) = \{x : ||x - x_0|| < r\} \subset A$. A set B is closed if its complement in X is open.

a) Show that a set B is closed if and only if for any convergent sequence $x_n \in B$, its limit is also in B.

b) Show that an arbitrary union of open sets is open and an arbitrary intersection of closed sets is closed.

Problem 3: Show that any two norms $\|\cdot\|_1, \|\cdot\|_2$ on \mathbb{R}^d are **equivalent**, i.e., there exist constant c, C such that

$$c\|x\|_1 \le \|x\|_2 \le C\|x\|_1$$

for all $x \in \mathbb{R}^d$.

Problem 4: a) Fix $1 \le p < \infty$ and consider the space ℓ_p , the space of sequence $x = (x_1, x_2, ...)$ such that

$$\sum_{j=1}^{\infty} |x_j|^p < \infty \; ,$$

with norm

$$||x||_p = \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{1/p}$$
.

Show that ℓ_p is complete.

b) Show also that ℓ_{∞} , which is the set of all bounded sequences with norm

$$||x||_{\infty} = \sup_{1 \le j < \infty} |x_j| ,$$

is complete.