
SOME “PHILOSOPHICAL” REMARKS ABOUT LIMITS

I would like to make some simple remarks about the notion of limit and the real numbers.
This is the point of view of a physicist or engineer. To be concrete consider the problem of
measuring some rod, maybe made out of platinum. Our problem is to measure its length. I do
not want to enter into a discussion about the physics of measuring length. Originally (1889)
the meter was defined by a platinum-iridium rod. The modern definition of the meter (1983)
is the distance it takes for light to travel in vacuum in 1/299792458 of a second.

The first conceptual problem is the existence of a length. Carpenters use their measuring
devices and come up with an approximate length. Then, with more sophistication the precision
can be improved until we reach the atomic scale. The surface of the platinum rod at this scale
is quite rugged and hence one is tempted to argue that the rod has no length, which, from a
practical point of view is ridiculous. In other words the notion of a length is related to the
accuracy of our measurements.

Only measurements that improve the accuracy are of interest. The carpenter measures
the length as `1 ± δ1. What this says is, that all subsequent measurements (which have
to be more precise for otherwise they are not interesting) must fall in the interval (`1 −
δ1, `1 + δ1). With a more sophisticated device, the accuracy can be improved with the result
`2 ∈ (`1 − δ1, `1 + δ1) for the length with an improved accuracy δ2. Clearly, δ2 < δ1. Again,
all subsequent measurements must fall in the interval (`2 − δ2, `2 + δ2). In an ideal world
(`2− δ2, `2 + δ2) ⊂ (`1− δ1, `1 + δ1). Please note, that a measurement consists of two numbers,
the “length” ` and the error δ. The length ` alone does not make any sense. With further
improvements one can continue this process. As I said before, the process of measuring the
length of a platinum rod must end at the atomic scale. Thus, one is tempted to assume that
the ultimate error in length measurements is the size of an atom. This, of course, does not
work. One can measure sizes of nuclei (10−15m), in fact in the recent LIGO experiments the
accuracy was driven to 10−19m. This accuracy will, presumably lead to a new definition of
the meter.

The point of mathematics is to analyze interesting idealizations. A central one is the notion
of limit, in which the sequence of measurements never terminates and the errors δn tend to
zero with n. This means that for a given accuracy δ there exists a measurement `n so that
all subsequent measurements fall into the interval (`n− δ, `n + δ). This is precisely the notion
of a Cauchy sequence. In its most elementary form it is realized by the decimal system.
With the accuracy 0.1 one determines the digit before the decimal point. With the accuracy
0.01 one determines the first digit after the decimal point etc. In some sense we can say that
analysis is engineering with infinite accuracy.
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Such Cauchy sequence, or more properly their equivalence classes, lead to the definition of
real numbers. Note, that such numbers are mostly a fiction but a useful one. To compute a
real number means to give a procedure that yields for any δ the `n so that any approximation
with hight accuracy is in the interval (`n − δ, `n + δ). E.g., to compute

√
2 the Babylonian

algorithm

`n+1 =
1

2

(
`n +

2

`n

)
, `0 = 1

produces such a sequence. By procedure one assumes that the work can in principle be done
by a Turing machine. It is important to notice that it can take only finitely many steps for
each digit! The undefined word is ‘steps’ and that is where ‘Turing machines’ enter.

It is not hard to see that “most” of the real numbers are not computable in the sense just
explained. In fact the computable numbers form a countable set whereas the real numbers are
not countable. This seems to be a bit counterintuitive, because all one has to do is to write
down a decimal expansion

N.p1p2p3 · · · .
Thus, the set of real numbers is nothing but the collection of infinite decimal expansions. The
problem with this description is that in general there is no rule that generates the decimal
expansion. This is in contrast to the Babylonian algorithm that is a rule for computing the
decimal expansion for

√
2. In fact, the notion of the set of real numbers is intimately connected

with the axiom of choice. I do not want to get into this but it is good to keep in mind that
most of the real numbers are not accessible. To invent ways of computing certain numbers is
in the realm of numerical mathematics. Nevertheless, the notion of real numbers is a useful
one and the notion that we can talk about a limit for every Cauchy sequence is called the
Completeness of the real numbers. It is not hard to see that this notion is equivalent to
the fact that every set of real numbers that is bounded above has a least upper bound and
every set of real umbers that is bounded below has a greatest lower bound. We call these
numbers supremum and infimum.

The completeness of the real numbers entails the notion of existence. For instance,
consider the theorem that any function continuous on a closed interval attains its maximum
and its minimum on that interval. In order to prove this let us be a bit more formal. We have
a bounded closed interval I = [a, b] and a function

f : I → R

and the function is continuous, i.e., for any sequence {xn}∞n=1 , xn ∈ I such that limn→∞ xn = x,

lim
n→∞

f(xn) = f(x) .

Note, that since I is closed x ∈ I. The existence of a minimum can be proved as follows.
Pick a minimizing sequence xn ∈ I, i.e., a sequence such that

lim
n→∞

f(xn) = inf
I
f .

Please note, that nobody tells you how to find that sequence. It follows from the notion of
infimum that such a sequence exists. Now we use the fact that a bounded closed interval is
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compact, i.e., every sequence has a subsequence that converges. Denoting this sequence again
by xn we get that this sequence converges to some point y and

inf
I
f = lim

n→∞
f(xn) = f(y)

which proves the claim. Again, from a computational point of view this theorem does not say
much. We have no prescription whatsoever for how to find y. Intuitively, the word “existence”
is tenuous from this perspective. The advantage, however, is that, in the realm of the real
numbers, we can talk about the minimum and at a further stage for particular examples
devices algorithms that allows us to compute them. To actually compute the minimum or
maximum depends on the particular function and such problem can be very difficult.

Please note, that this scheme assumes a logical system. A constructivist who does not
accept the real numbers as given, but only those that can be computed will not accept proofs
using this scheme. In this course, however, we will not worry about these issues, but it is a
good idea to keep these in mind. Often we say that certain mathematical objects exist but
we have not the slightest idea how to compute them.


